首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74919篇
  免费   41230篇
  国内免费   11篇
耳鼻咽喉   1485篇
儿科学   4218篇
妇产科学   504篇
基础医学   15286篇
口腔科学   5078篇
临床医学   12129篇
内科学   22541篇
皮肤病学   7429篇
神经病学   13171篇
特种医学   2120篇
外科学   13585篇
综合类   2篇
一般理论   21篇
预防医学   4037篇
眼科学   1213篇
药学   5416篇
中国医学   1006篇
肿瘤学   6919篇
  2023年   16篇
  2022年   35篇
  2021年   1242篇
  2020年   5017篇
  2019年   10782篇
  2018年   10041篇
  2017年   11401篇
  2016年   12041篇
  2015年   11887篇
  2014年   11759篇
  2013年   12212篇
  2012年   3963篇
  2011年   3882篇
  2010年   8823篇
  2009年   5186篇
  2008年   1906篇
  2007年   736篇
  2006年   803篇
  2005年   583篇
  2004年   584篇
  2003年   600篇
  2002年   708篇
  2001年   762篇
  2000年   682篇
  1999年   247篇
  1998年   26篇
  1997年   18篇
  1996年   20篇
  1995年   9篇
  1994年   15篇
  1993年   8篇
  1992年   24篇
  1991年   18篇
  1990年   16篇
  1989年   12篇
  1988年   7篇
  1987年   9篇
  1986年   8篇
  1985年   9篇
  1984年   5篇
  1983年   3篇
  1982年   6篇
  1981年   6篇
  1980年   3篇
  1976年   9篇
  1975年   4篇
  1974年   3篇
  1973年   3篇
  1972年   4篇
  1971年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The body is constantly faced with a dynamic requirement for blood flow. The heart is able to respond to these changing needs by adjusting cardiac output based on cues emitted by circulating catecholamine levels. Cardiac β‐adrenoceptors transduce the signal produced by catecholamine stimulation via Gs proteins to their downstream effectors to increase heart contractility. During heart failure, cardiac output is insufficient to meet the needs of the body; catecholamine levels are high and β‐adrenoceptors become hyperstimulated. The hyperstimulated β1‐adrenoceptors induce a cardiotoxic effect, which could be counteracted by the cardioprotective effect of β2‐adrenoceptor‐mediated Gi signalling. However, β2‐adrenoceptor‐Gi signalling negates the stimulatory effect of the Gs signalling on cardiomyocyte contraction and further exacerbates cardiodepression. Here, further to the localization of β1‐ and β2‐adrenoceptors and β2‐adrenoceptor‐mediated β‐arrestin signalling in cardiomyocytes, we discuss features of the dysregulation of β‐adrenoceptor subtype signalling in the failing heart, and conclude that Gi‐biased β2‐adrenoceptor signalling is a pathogenic pathway in heart failure that plays a crucial role in cardiac remodelling. In contrast, β2‐adrenoceptor‐Gs signalling increases cardiomyocyte contractility without causing cardiotoxicity. Finally, we discuss a novel therapeutic approach for heart failure using a Gs‐biased β2‐adrenoceptor agonist and a β1‐adrenoceptor antagonist in combination. This combination treatment normalizes the β‐adrenoceptor subtype signalling in the failing heart and produces therapeutic effects that outperform traditional heart failure therapies in animal models. The present review illustrates how the concept of biased signalling can be applied to increase our understanding of the pathophysiology of diseases and in the development of novel therapies.

Linked Articles

This article is part of a themed section on Chinese Innovation in Cardiovascular Drug Discovery. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-23

Abbreviations

ACEI
ACE inhibitors
CaMKII
Ca2+/calmodulin‐dependent kinase II
ct
carboxy terminus
EGFR
epidermal growth receptor
Epac
exchange protein directly activated by cAMP
Gi
inhibitory G protein
GRK
GPCR kinase
Gs
stimulatory G protein
HF
heart failure
PKA
cAMP‐dependent protein kinase
SNS
sympathetic nervous system
Tables of Links
TARGETS
GPCRs a Enzymes d
β1‐adrenoceptor Adenylyl cyclase (AC)
β2‐adrenoceptor Akt (PKB)
Angiotensin receptors CaMKII
Nuclear hormone receptors b Epac
Aldosterone receptor ERK
Catalytic receptors c GRK2
EGFR PKA
PI3K
Open in a separate window
LIGANDS
Carvedilol Fenoterol
Digoxin Metoprolol
Open in a separate windowThese Tables list key protein targets and ligands in this article which are hyperlinked to corresponding entries in http://www.guidetopharmacology.org, the common portal for data from the IUPHAR/BPS Guide to PHARMACOLOGY (Pawson et al., 2014) and are permanently archived in the Concise Guide to PHARMACOLOGY 2013/14 (a,b,c,dAlexander et al., 2013a, 2013b, 2013c, 2013d).  相似文献   
992.

Background and Purpose

β‐Arrestins function as signal transducers linking GPCRs to ERK1/2 signalling either by scaffolding members of ERK1/2s cascades or by transactivating receptor tyrosine kinases through Src‐mediated release of transactivating factor. Recruitment of β‐arrestins to the activated GPCRs is required for ERK1/2 activation. Our previous studies showed that δ receptors activate ERK1/2 through a β‐arrestin‐dependent mechanism without inducing β‐arrestin binding to the δ receptors. However, the precise mechanisms involved remain to be established.

Experimental Approach

ERK1/2 activation by δ receptor ligands was assessed using HEK293 cells in vitro and male Sprague Dawley rats in vivo. Immunoprecipitation, immunoblotting, siRNA transfection, intracerebroventricular injection and immunohistochemistry were used to elucidate the underlying mechanism.

Key Results

We identified a new signalling pathway in which recruitment of β‐arrestin2 to the EGFR rather than δ receptor was required for its role in δ receptor‐mediated ERK1/2 activation in response to H‐Tyr–Tic–Phe–Phe–OH (TIPP) or morphine stimulation. Stimulation of the δ receptor with ligands leads to the phosphorylation of PKCδ, which acts upstream of EGFR transactivation and is needed for the release of the EGFR‐activating factor, whereas β‐arrestin2 was found to act downstream of the EGFR transactivation. Moreover, we demonstrated that coupling of the PKCδ/EGFR/β‐arrestin2 transactivation pathway to δ receptor‐mediated ERK1/2 activation was ligand‐specific and the Ser363 of δ receptors was crucial for ligand‐specific implementation of this ERK1/2 activation pathway.

Conclusions and Implications

The δ receptor‐mediated activation of ERK1/2 is via ligand‐specific transactivation of EGFR. This study adds new insights into the mechanism by which δ receptors activate ERK1/2.

Abbreviations

DPDPE
[D‐Pen2, D‐Pen5] enkephalin
HB‐EGF
heparin‐binding EGF‐like growth factor
IGFR
insulin‐like growth factor receptor
NG108‐15
cell mouse neuroblastoma x rat glioma hybrid cell
RTK
receptor tyrosine kinase
TIPP
H‐Tyr‐Tic‐Phe‐Phe‐OH
  相似文献   
993.

Background and Purpose

Cannabidiol has been reported to act as an antagonist at cannabinoid CB1 receptors. We hypothesized that cannabidiol would inhibit cannabinoid agonist activity through negative allosteric modulation of CB1 receptors.

Experimental Approach

Internalization of CB1 receptors, arrestin2 recruitment, and PLCβ3 and ERK1/2 phosphorylation, were quantified in HEK 293A cells heterologously expressing CB1 receptors and in the STHdh Q7/Q7 cell model of striatal neurons endogenously expressing CB1 receptors. Cells were treated with 2‐arachidonylglycerol or Δ9‐tetrahydrocannabinol alone and in combination with different concentrations of cannabidiol.

Key Results

Cannabidiol reduced the efficacy and potency of 2‐arachidonylglycerol and Δ9‐tetrahydrocannabinol on PLCβ3‐ and ERK1/2‐dependent signalling in cells heterologously (HEK 293A) or endogenously (STHdh Q7/Q7) expressing CB1 receptors. By reducing arrestin2 recruitment to CB1 receptors, cannabidiol treatment prevented internalization of these receptors. The allosteric activity of cannabidiol depended upon polar residues being present at positions 98 and 107 in the extracellular amino terminus of the CB1 receptor.

Conclusions and Implications

Cannabidiol behaved as a non‐competitive negative allosteric modulator of CB1 receptors. Allosteric modulation, in conjunction with effects not mediated by CB1 receptors, may explain the in vivo effects of cannabidiol. Allosteric modulators of CB1 receptors have the potential to treat CNS and peripheral disorders while avoiding the adverse effects associated with orthosteric agonism or antagonism of these receptors.

Abbreviations

2‐AG
2‐arachidonyl glycerol
BRETEff
BRET efficiency
CBD
cannabidiol
FAAH
fatty acid amide hydrolase
NAM
negative allosteric modulator
THC
Δ9‐tetrahydrocannabinol
  相似文献   
994.
995.
996.
997.
998.
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号