首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2557篇
  免费   120篇
  国内免费   10篇
耳鼻咽喉   18篇
儿科学   477篇
妇产科学   40篇
基础医学   240篇
口腔科学   24篇
临床医学   159篇
内科学   494篇
皮肤病学   62篇
神经病学   112篇
特种医学   98篇
外科学   429篇
综合类   83篇
预防医学   86篇
眼科学   45篇
药学   136篇
中国医学   7篇
肿瘤学   177篇
  2023年   17篇
  2022年   21篇
  2021年   40篇
  2020年   25篇
  2019年   35篇
  2018年   70篇
  2017年   30篇
  2016年   66篇
  2015年   47篇
  2014年   82篇
  2013年   97篇
  2012年   166篇
  2011年   148篇
  2010年   112篇
  2009年   67篇
  2008年   125篇
  2007年   129篇
  2006年   112篇
  2005年   100篇
  2004年   81篇
  2003年   102篇
  2002年   97篇
  2001年   86篇
  2000年   80篇
  1999年   66篇
  1998年   38篇
  1997年   20篇
  1996年   34篇
  1995年   25篇
  1994年   26篇
  1993年   16篇
  1992年   49篇
  1991年   56篇
  1990年   32篇
  1989年   36篇
  1988年   28篇
  1987年   31篇
  1986年   29篇
  1985年   33篇
  1984年   20篇
  1983年   14篇
  1981年   23篇
  1980年   10篇
  1979年   15篇
  1978年   16篇
  1977年   26篇
  1976年   26篇
  1975年   12篇
  1974年   11篇
  1968年   8篇
排序方式: 共有2687条查询结果,搜索用时 15 毫秒
71.
Cardio Vascular disease (CVD) as well as depression are both highly prevalent disorders and both of them cause a significant decrease in quality of life and increase the economic burden for the patient. Depressed individuals are more likely to develop angina, fatal or non-fatal myocardial infarction, than those who are not depressed. Over the past decade, evidence has accumulated to suggest that depression may be a risk factor for cardiac mortality in patients with established coronary artery disease (CAD). The 'vicious cycle' linking CVD to major depression and depression to CVD, deserves greater attention from both cardio-vascular and psychiatric investigators.(1).  相似文献   
72.
Energy coupling factor (ECF) proteins are ATP-binding cassette transporters involved in the import of micronutrients in prokaryotes. They consist of two nucleotide-binding subunits and the integral membrane subunit EcfT, which together form the ECF module and a second integral membrane subunit that captures the substrate (the S component). Different S components, unrelated in sequence and specific for different ligands, can interact with the same ECF module. Here, we present a high-resolution crystal structure at 2.1 Å of the biotin-specific S component BioY from Lactococcus lactis. BioY shares only 16% sequence identity with the thiamin-specific S component ThiT from the same organism, of which we recently solved a crystal structure. Consistent with the lack of sequence similarity, BioY and ThiT display large structural differences (rmsd = 5.1 ), but the divergence is not equally distributed over the molecules: The S components contain a structurally conserved N-terminal domain that is involved in the interaction with the ECF module and a highly divergent C-terminal domain that binds the substrate. The domain structure explains how the S components with large overall structural differences can interact with the same ECF module while at the same time specifically bind very different substrates with subnanomolar affinity. Solitary BioY (in the absence of the ECF module) is monomeric in detergent solution and binds D-biotin with a high affinity but does not transport the substrate across the membrane.  相似文献   
73.
74.

Background:

Failed intertrochanteric fractures in elderly patients are surgical challenge with limited options. Hip arthroplasty is a good salvage procedure even though it involves technical issues such as implant removal, bone loss, poor bone quality, trochanteric nonunion and difficulty of surgical exposure.

Materials and Methods:

30 patients of failed intertrochanteric fractures where hip arthroplasty was done between May 2008 and December 2011 were included in study. 13 were males and 17 were females with average age of 67.3 years. There were 2 cemented bipolar arthroplasties, 19 uncemented bipolar, 4 cemented total hip arthroplasty and 5 uncemented total hip arthroplasties. 16 patients had a trochanteric nonunion, which was treated by tension band principles. Total hip was considered where there was acetabular damage due to the penetration of implant.

Results:

The average followup was 20 months (range 6-48 months). Patients were followed up from 6 to 48 months with average followup of 20 months. None of the patients were lost to followup. There was no dislocation. All patients were ambulatory at the final followup.

Conclusion:

A predictable functional outcome can be achieved by hip arthroplasty in elderly patients with failed intertrochanteric fractures. Though technically demanding, properly performed hip arthroplasty can be a good salvage option for this patient group.  相似文献   
75.
Invariant natural killer T (iNKT) cells belong to the innate immune system and exercise a dual role as potent regulators of autoimmunity and participate in responses against different pathogens. They have been shown to prevent type 1 diabetes development and to promote antiviral responses. Many studies in the implication of environmental factors on the etiology of type 1 diabetes have suggested a link between enteroviral infections and the development of this disease. This study of the pancreatropic enterovirus Coxsackievirus B4 (CVB4) shows that although infection accelerated type 1 diabetes development in a subset of proinsulin 2–deficient NOD mice, the activation of iNKT cells by a specific agonist, α-galactosylceramide, at the time of infection inhibited the disease. Diabetes development was associated with the infiltration of pancreatic islets by inflammatory macrophages, producing high levels of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α and activation of anti-islet T cells. On the contrary, macrophages infiltrating the islets after CVB4 infection and iNKT-cell stimulation expressed a number of suppressive enzymes, among which indoleamine 2,3-dioxygenase was sufficient to inhibit anti-islet T-cell response and to prevent diabetes. This study highlights the critical interaction between virus and the immune system in the acceleration or prevention of type 1 diabetes.Type 1 diabetes is characterized by the destruction of pancreatic islet β-cells by autoreactive CD4 and CD8 T cells, leading to low insulin production and incapacity to regulate blood glucose levels (1). Despite numerous studies, the etiology of type 1 diabetes remains elusive. Besides genetics (24), environmental factors such as viral infections have been suggested as triggers of type 1 diabetes (57). Most striking of these infections are the type B Coxsackieviruses belonging to the enterovirus genus whose genome and anti-Coxsackievirus antibodies were detected more frequently in the blood of recently diagnosed patients compared with healthy controls (8,9). Besides, enteroviral RNA or enteroviral particles were directly detected in the pancreas of type 1 diabetic patients, whereas they were undetectable in the pancreas of healthy donors (9,10). In a mouse model of type 1 diabetes, Serreze et al. (11) showed that diabetes can develop rapidly after Coxsackievirus B4 (CVB4) infection if mice had an advanced age and sufficient insulitis. Others have reported that inefficient islet β-cell response, viral dose, and replication rate as well as a lack of islet neogenesis could also promote accelerated diabetes development after CVB4 infection (1214).Natural killer T (NKT) cells are CD1d-restricted, nonconventional T cells recognizing self and exogenous glycolipids. Most NKT cells express an invariant T-cell receptor α chain, Vα14-Jα18 (Vα14) in mice and Vα24-Jα18 in humans, and are named invariant NKT (iNKT) cells. They can promptly secrete copious amounts of interferon-γ (IFN-γ) and interleukin (IL)-4 and provide maturation signals to dendritic cells (DCs) and lymphocytes, thereby contributing to both innate and acquired immunity (15,16). iNKT cells are potent regulatory cells that can inhibit autoimmunity and promote immune responses against pathogens (1,17). Diabetes can be prevented in NOD mice by increasing iNKT cell numbers and by iNKT-cell stimulation with exogenous ligands such as α-galactosylceramide (αGalCer) (15,18,19). NOD mice protected from diabetes by iNKT cells have weak T helper 1 anti-islet β-cell responses (20). Indeed, iNKT cells can impair the differentiation of anti-islet CD4 and CD8 T cells, which become hyporesponsive or anergic (21). Contrary to their suppressive role in type 1 diabetes, iNKT cells can enhance immune responses to pathogens such as parasites, bacteria, and viruses (22,23).Our previous studies conducted in a murine model of type 1 diabetes with lymphocytic choriomeningitis virus infection revealed that iNKT cells could promote systemic antiviral CD8 T-cell responses while inhibiting deleterious anti-islet T-cell responses, thereby preventing type 1 diabetes (24,25). In the present study, we investigated the role of iNKT cells after CVB4 infection, revealing that diabetes development following CVB4 infection is associated with the infiltration of inflammatory macrophages into the pancreatic islets with subsequent activation of anti-islet T cells. However, the activation of iNKT cells during CVB4 infection results in the infiltration of suppressive macrophages into pancreatic islets. Indoleamine 2,3-dioxygenase (IDO) expressed by these macrophages was critical for the inhibition of diabetes development.  相似文献   
76.
Mechanisms of simple hepatic steatosis: not so simple after all   总被引:1,自引:0,他引:1  
Nonalcoholic fatty liver disease is becoming an epidemic. Fat is typically stored in adipose tissue in the form of triglycerides (TGs). The deposition of TGs in the liver is the result of an imbalance between the amount of energy taken in and the amount used. This balance is maintained by a complex interplay between the dietary intake of nutrients, the hormonal response to the nutrients, and their effect on both the liver and adipose tissue. Disruption of this system is what leads to the development of steatosis and is the focus of this article.  相似文献   
77.
78.
79.
80.
Summary

Neurospectroscopy allows biochemical processes in the brain to be studied non-invasively. At magnetic field strengths of 1.5?T or higher, cerebral proton neurospectroscopy allows the ascertainment of values of myo-inositol, choline-containing compounds, creatine, glutamate, glutamine, and N-acetyl aspartate. At similar field strengths, cerebral 31-phosphorus neurospectroscopy allows the ascertainment of values of phosphomonoesters, inorganic phosphate, phosphodiesters, phosphocreatine, and the gamma, alpha and beta nucleotide triphosphate (mainly adenosine triphosphate) resonances. Since choline is a common polar head group at the Sn3 position of membrane phospholipid molecules, a raised level of free choline, as indexed by proton neurospectroscopy, can indicate relatively low anabolism of membrane phospholipid molecules. Furthermore, the choline peak includes phosphorylcholine and glycerophosphorylcholine and even ethanolamine. The phosphomonoesters peak measured using 31-phosphorus spectroscopy includes major contributions from phosphocholine, phosphoethanolamine and L-phosphoserine, which are important precursors of membrane phospholipids, while the phosphodiesters peak includes contributions from glycerophosphocholine and glycerophosphoethanolamine, which are important products of membrane phospholipid catabolism. Hence proton neurospectroscopy and 31-phosphorus neurospectroscopy can yield important information relating to the metabolism of cerebral membrane phospholipids. The application of these techniques to the investigation of membrane phospholipid metabolism in schizophrenia, depression, chronic fatigue syndrome (myalgic encephalomyelitis or M.E.) and dyslexia is described.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号