首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15495篇
  免费   855篇
  国内免费   69篇
耳鼻咽喉   132篇
儿科学   297篇
妇产科学   478篇
基础医学   1856篇
口腔科学   518篇
临床医学   1242篇
内科学   4328篇
皮肤病学   397篇
神经病学   1381篇
特种医学   399篇
外科学   2280篇
综合类   98篇
一般理论   2篇
预防医学   1114篇
眼科学   222篇
药学   827篇
中国医学   70篇
肿瘤学   778篇
  2023年   143篇
  2022年   308篇
  2021年   638篇
  2020年   333篇
  2019年   523篇
  2018年   696篇
  2017年   405篇
  2016年   419篇
  2015年   471篇
  2014年   722篇
  2013年   842篇
  2012年   1329篇
  2011年   1324篇
  2010年   684篇
  2009年   612篇
  2008年   1036篇
  2007年   945篇
  2006年   914篇
  2005年   897篇
  2004年   779篇
  2003年   620篇
  2002年   620篇
  2001年   89篇
  2000年   93篇
  1999年   89篇
  1998年   95篇
  1997年   66篇
  1996年   77篇
  1995年   63篇
  1994年   53篇
  1993年   36篇
  1992年   48篇
  1991年   34篇
  1990年   32篇
  1989年   21篇
  1988年   24篇
  1987年   20篇
  1986年   28篇
  1985年   25篇
  1984年   26篇
  1983年   18篇
  1982年   23篇
  1981年   22篇
  1980年   25篇
  1979年   14篇
  1978年   16篇
  1976年   10篇
  1974年   14篇
  1973年   20篇
  1972年   11篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
41.
Ischemia negatively affects mitochondrial function by inducing the mitochondrial permeability transition (MPT). The MPT is triggered by oxidative stress, which occurs in mitochondria during ischemia as a result of diminished antioxidant defenses and increased reactive oxygen species production. It causes mitochondrial dysfunction and can ultimately lead to cell death. Therefore, drugs able to minimize mitochondrial damage induced by ischemia may prove to be clinically effective. We analyzed the effect of carvedilol, a beta-blocker with antioxidant properties, on mitochondrial dysfunction. Carvedilol decreased levels of TBARS (thiobarbituric acid reactive substances), an indicator of oxidative stress, which is consistent with its antioxidant properties. Regarding cell death by apoptosis, although ischemia did increase caspase-8-like activity, there were no changes in caspase-3-like activity, which is activated downstream of caspase-8; this may indicate that the apoptotic cascade is not activated by 60 minutes of ischemia. We conclude that carvedilol protects ischemic mitochondria by preventing oxidative mitochondrial damage, and, by so doing, it may also inhibit the formation of the MPT pore.  相似文献   
42.
Flow Streamlining Devices is a new tool in Coronary Artery Bypass Grafting (CABG). They aim in: a) Performing a sutureless anastomosis to reduce thrombosis at the veno-arterial junction, and b) Providing a hemodynamically efficient scaffolding to reduce secondary flow disturbances. Thrombosis and flow disturbances are factors that have been reported as contributing factors to the development of intimal hyperplasia (IH) and failure of the graft. By reducing thrombosis and flow disturbances, it is expected that IH will be inhibited and the lifetime of the graft extended. To evaluate the hemodynamic benefits of such an implant, two models were designed and fabricated. One simulated the geometry of the conventional anastomosis without an implant, and the other simulated an anastomosis with a flow streamlining implant. Identical flow conditions relevant to a coronary anastomosis were imposed on both models and flow visualization was performed with dye injection and a digital camera. Results showed reduction of disturbances in the presence of the implant. This reduction seems to be favorable to hemodynamic streamlining which may create conditions that may inhibit the initialization of IH. However, the compliance and geometric mismatch between the anastomosis and the implant created a disturbance at the rigid compliant wall interface, which should be eliminated prior to clinical applications.  相似文献   
43.
44.
45.
46.
47.
Glioblastoma multiforme (GBM) is the most common subtype of primary malignant brain tumor. Although serotype 5 adenoviral vectors (Ads) have been used successfully in clinical trials for GBM, the capacity of Ads to infect human glioma cells and the expression of adenoviral receptors in GBM cells have been challenged. In this report, we studied the expression of three molecules that have been shown to mediate adenoviral entry into cells, i.e., coxsackie and adenovirus receptor (CAR), integrin alphavbeta3 (INT), and major histocompatibility complex class I (MHCI), in rodent glioma cell lines and low-passage primary cultures and cell lines from human GBM. We correlated levels of expression of CAR, INT, and MHCI with transduction efficiency elicited by several high-capacity helper-dependent adenoviral vectors (HC-Ads). Expression levels of adenoviral receptors were variable among the different GBM cells studied. HC-Ad-mediated therapeutic gene expression was efficient, ranging between 20 and 80% of the total target cells expressing the encoded transgenes. Our results show no correlation between the levels of CAR, INT, or MHCI molecules and the levels of transgene expression or the number of GBM cells transduced. We conclude that expression levels of adenoviral receptors do not predict their transduction efficiency or biological function.  相似文献   
48.
Stress is known to be one of the risk factors of stroke. Most of the knowledge on the effects of stress on cerebrovascular disease in humans is restricted to catecholamines and glucocorticoids effects on blood pressure and/or development of atherosclerosis. However, few experimental studies have examined the possible mechanisms by which stress may affect stroke outcome. We have used an acute stress protocol consisting of the exposure of male Fischer rats to an acute, single exposure immobilisation protocol (6 h) prior to permanent middle cerebral artery occlusion (MCAO), and we have found that stress worsens behavioural and neurological outcomes and increased infarct size after MCAO. The possible regulatory role of the TNFalpha and IL-1beta was studied by looking at the release of these cytokines in brain. The results of the present study showed an increase in IL-1beta release in cerebral cortex after exposure to acute stress. Brain levels of IL-1beta are also higher in previously stressed MCAO rats than in MCAO animals without stress. Pharmacological blockade of IL-1beta with an antibody anti-IL-1beta led to a decrease in the infarct size as well as in neurological and behavioural deficits after MCAO. In summary, our results indicate that IL-1beta, but not TNFalpha, accounts at least partly for the worsening of MCAO consequences in brain of rats exposed to acute stress.  相似文献   
49.
50.
OBJECTIVE: To investigate the spatial distribution of the magnitude and direction of the current density in the human head during transcranial direct current stimulation (tDCS). METHODS: The current density distribution was calculated using a numerical method to implement a standard spherical head model into which current was injected by means of large electrodes. The model was positioned in 'MNI space' to facilitate the interpretation of spatial coordinates. RESULTS: The magnitude and direction of the current density vector are illustrated in selected brain slices for four different electrode montages. Approximately half of the current injected during tDCS is shunted through the scalp, depending on electrode dimension and position. Using stimulating currents of 2.0 mA, the magnitude of the current density in relevant regions of the brain is of the order of 0.1 A/m2, corresponding to an electric field of 0.22 V/m. CONCLUSIONS: Calculations based on a spherical model of the head can provide useful information about the magnitude and direction of the current density vector in the brain during tDCS, taking into account the geometry and position of the electrodes. Despite the inherent limitations of the spherical head model, the calculated values are comparable to those used in the most recent in vitro studies on modulation of neuronal activity. SIGNIFICANCE: The methodology presented in this paper may be used to assess the current distribution during tDCS using new electrode montages, to help optimize montages that target a specific region of the brain or to preliminarily investigate compliance with safety guidelines.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号