首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1450篇
  免费   122篇
  国内免费   14篇
耳鼻咽喉   12篇
儿科学   75篇
妇产科学   49篇
基础医学   211篇
口腔科学   17篇
临床医学   161篇
内科学   274篇
皮肤病学   38篇
神经病学   131篇
特种医学   73篇
外国民族医学   1篇
外科学   207篇
综合类   73篇
一般理论   3篇
预防医学   105篇
眼科学   15篇
药学   86篇
中国医学   2篇
肿瘤学   53篇
  2022年   6篇
  2021年   24篇
  2020年   23篇
  2019年   29篇
  2018年   19篇
  2017年   33篇
  2016年   32篇
  2015年   20篇
  2014年   34篇
  2013年   61篇
  2012年   70篇
  2011年   63篇
  2010年   55篇
  2009年   70篇
  2008年   92篇
  2007年   76篇
  2006年   64篇
  2005年   62篇
  2004年   53篇
  2003年   48篇
  2002年   46篇
  2001年   32篇
  2000年   46篇
  1999年   47篇
  1998年   31篇
  1997年   33篇
  1996年   37篇
  1995年   28篇
  1994年   22篇
  1993年   23篇
  1992年   28篇
  1991年   23篇
  1990年   18篇
  1989年   30篇
  1988年   18篇
  1987年   22篇
  1986年   14篇
  1985年   18篇
  1984年   13篇
  1983年   17篇
  1982年   7篇
  1981年   6篇
  1980年   13篇
  1979年   7篇
  1977年   9篇
  1976年   6篇
  1975年   7篇
  1973年   11篇
  1972年   7篇
  1966年   6篇
排序方式: 共有1586条查询结果,搜索用时 15 毫秒
71.
Cluster of differentiation 1c (CD1c)-dependent self-reactive T cells are abundant in human blood, but self-antigens presented by CD1c to the T-cell receptors of these cells are poorly understood. Here we present a crystal structure of CD1c determined at 2.4 Å revealing an extended ligand binding potential of the antigen groove and a substantially different conformation compared with known CD1c structures. Computational simulations exploring different occupancy states of the groove reenacted these different CD1c conformations and suggested cholesteryl esters (CE) and acylated steryl glycosides (ASG) as new ligand classes for CD1c. Confirming this, we show that binding of CE and ASG to CD1c enables the binding of human CD1c self-reactive T-cell receptors. Hence, human CD1c adopts different conformations dependent on ligand occupancy of its groove, with CE and ASG stabilizing CD1c conformations that provide a footprint for binding of CD1c self-reactive T-cell receptors.Cluster of differentiation 1 (CD1) proteins are a family of MHC class I-like glycoproteins that present lipid antigens to T cells. CD1 restricted T cells are abundant in humans and play important roles in host defense and immune regulation. Human CD1 proteins comprise five CD1 isoforms, CD1a, CD1b, CD1c, CD1d, and CD1e, which exhibit different intracellular trafficking behaviors and ligand binding preferences (1). Structurally, the main differences between these CD1 isoforms lie in the architecture of their lipophilic ligand binding grooves. Whereas all CD1 isoforms share a highly conserved A′ channel (or pocket) for binding C18–C26 acyl chains, specialization is provided by further connecting channels (27). In CD1a, the A′ channel is “fused” to a wide and shallow F′ channel, enabling binding of lipopeptides such as mycobacterial didehydroxymycobactin (DDM) (8). CD1b features a unique T′ tunnel that connects A′ and F′, thereby forming a “superchannel” for accommodating very long acyl chains (e.g., mycobacterial mycolates) (2, 4). CD1d, the only isoform also conserved in rodents, exhibits a two-branched ligand binding groove with two linear channels A′ and F′ connected near the main portal into the groove, known as the F′ portal. A similar two-branched arrangement of A′ and F′ is seen in CD1e, the only CD1 isoform not expressed on the cell surface. Compared with CD1d, CD1a, and CD1b, the portal into the groove in CD1e is widely exposed, consistent with its known role in lipid transfer processes inside lysosomes (6).CD1c presents foreign- (9, 10) as well as self-lipid antigens to T cells (11). Two recent crystal structures of human CD1c revealed a two-branched design similar to that of CD1d and CD1e, with two channels A′ and F′ connecting near the groove portal. In these structures, a mycobacterial phosphomycoketide (PM) or mannosyl-β1-phosphomycoketide (MPM) occupied the A′ channel, whereas an undefined short ligand was present in the F′ channel (7, 12). The spatial arrangement of these ligands in the CD1c groove was very similar to and virtually overlapping in 3D comparisons with that of alpha-galactosylceramide (αGC) in human CD1d (Fig. S1 A and B). Because CD1c and CD1d are known to traffic to the same intracellular compartments for antigen sampling (13), these CD1c-PM and CD1c-MPM structures did not readily explain how CD1c and CD1d could functionally differentiate. Furthermore, the F′ channel in both CD1c-PM and CD1c-MPM was widely open to solvent, which was strikingly different from known structures of CD1a, CD1b, and CD1d and reminiscent of CD1e (7, 12). Based on these facts we hypothesized that human CD1c might undergo substantial conformational transformations in the F′ channel region upon binding of more optimal ligands, with relevance for T-cell receptor binding.Open in a separate windowFig. S1.Published CD1d-αGC and CD1c-MPM structures show a similar arrangement of their bound ligands in both the A′ and F′ channel. (A) Comparison of the configurations of bound ligands in CD1d-αGC (PDB ID code 1ZT4), CD1c-MPM (PDB ID code 3OV6), and CD1c-SL (PDB ID code 5C9J). (B) Ligands bound to CD1d (PDB ID code 1ZT4) (αGC; shown in yellow) and CD1c (PDB ID code 3OV6) (MPM; shown in blue, and spacer lipid shown in cyan) are superimposed and shown in two different orientations.  相似文献   
72.
We describe the development of a human bone marrow (BM) culture system which allows study of the interaction of stromal cell lines (SCL) and highly purified hematopoietic progenitor cells. Normal BM stromal cells were electroporated with a plasmid containing the simian virus 40 (SV40) large T antigen (SV40 T Ag) under the control of a synthetic metallothionein promoter (MT4); this construct is designated MT4 SV40 T Ag. SCL in which the rate of proliferation could be controlled by altering the zinc (Zn) concentration were characterized, demonstrating that the SCL were heterogeneous with respect to G-CSF and GM-CSF production. Suppression of SCL proliferation on removal of Zn made it possible to use these lines in coculture with purified CD34+ progenitor cells from umbilical cord blood. The ability to control proliferation of SCL has allowed us to maintain the survival and expansion of colony- forming cells in culture for up to 2 months. These lines have enabled us to test for stromal cell characteristics at a clonal level and provided us with a tool to analyze the events leading to lineage commitment and hematopoietic differentiation, as demonstrated by suppression of hematopoiesis by an antibody directed against the c-kit molecule.  相似文献   
73.
Angioplasty of anomalous coronary arteries presents unique technical challenges. Correct guiding catheter selection is important to ensure adequate access to the anomalous vessel and to provide support to cross the lesion. A case of successful PTCA of a lesion in an anomalous right coronary artery arising from the left main coronary artery is presented. © 1993 Wiiey-Liss, Inc.  相似文献   
74.
We report here on a preliminary human autologous transplantation study of retroviral gene transfer to bone marrow (BM) and peripheral blood (PB)-derived CD34-enriched cells. Eleven patients with multiple myeloma or breast cancer had cyclophosphamide and filgrastim-mobilized PB cells CD34-enriched and transduced with a retroviral marking vector containing the neomycin resistance gene, and CD34-enriched BM cells transduced with a second marking vector also containing a neomycin resistance gene. After high-dose conditioning therapy, both transduced cell populations were reinfused and patients were followed over time for the presence of the marker gene and any adverse effects related to the gene-transfer procedure. All 10 evaluable patients had the marker gene detected at the time of engraftment, and 3 of 9 patients had persistence of the marker gene for greater than 18 months posttransplantation. The marker gene was detected in multiple lineages, including granulocytes, T cells, and B cells. The source of the marking was both the transduced PB graft and the BM graft, with a suggestion of better long-term marking originating from the PB graft. The steady- state levels of marking were low, with only 1:1000 to 1:10,000 cells positive. There was no toxicity noted, and patients did not develop detectable replication-competent helper virus at any time posttransplantation. These results suggest that mobilized PB cells may be preferable to BM for gene therapy applications and that progeny of mobilized peripheral blood cells can contribute long-term to engraftment of multiple lineages.  相似文献   
75.
LaDuca  FM; Bettigole  RE; Bell  WR; Robson  EB 《Blood》1986,68(4):927-937
The contribution of von Willebrand factor (vWF)-platelet binding to platelet-collagen interaction was examined in vitro. The binding of vWF to platelets was mediated and regulated by ristocetin. Subthreshold concentrations of ristocetin (less than or equal to 1 mg/mL), insufficient to cause ristocetin-induced platelet aggregation (RIPA), were added to platelet-rich plasma (PRP) prior to the addition of collagen. The collagen-induced platelet aggregation (CIPA) was modified by ristocetin and the degree of alteration was dependent on the ristocetin concentration. Response as a function of ristocetin concentration was designated the Collagen-Platelet Aggregation Response (CoI-PAR). In normal PRP the CoI-PAR was a progressive inhibition followed by decreasing inhibition and then an enhanced response. The enhanced response occurred over a narrow range of ristocetin concentrations (0.8 to 1.0 mg/mL). In the absence of vWF (severe von Willebrand's disease, Type I, vWF less than 1%) the CoI-PAR was a progressive, eventually complete inhibition with no enhanced response (with ristocetin concentrations up to 3.0 mg/mL). With addition of vWF to this PRP an enhanced response was observed at a ristocetin concentration inversely proportional to the vWF level. PRP from a patient with severe Hemophilia A showed a response within the normal range. Subthreshold ristocetin did not cause plasma protein precipitation or platelet release of 3H-serotonin, nor induce micro platelet aggregate formation. Digestion of platelet membrane glycoproteins (GP(s] with chymotrypsin demonstrated that upon removal of GPI, RIPA was absent, CIPA retained and the CoI-PAR was progressive inhibition, with no enhancement. With removal of GPs I, II, and III, RIPA, CIPA, and the CoI-PAR were absent. A dose-response 125I-vWF- platelet binding occurred with increasing ristocetin concentrations which was unchanged by the addition of collagen. These results demonstrated that ristocetin-platelet association inhibited CIPA, and vWF-platelet binding enhanced platelet-collagen adhesion and platelet aggregation. The in vitro-enhanced CIPA represents a vWF-dependent aggregation of sufficient magnitude to overcome the inhibitory effect of ristocetin. These studies demonstrate an influential interaction of ristocetin, vWF, and collagen with the platelet membrane and imply an important hemostatic contribution of vWF-platelet binding in platelet- collagen interaction.  相似文献   
76.
We report the successful long-term engraftment of normal male donor bone marrow (BM) transfused into noncytoablated female mice, challenging the assumption that "niches" need to be created for marrow to engraft. We have used chromosomal banding and Southern blot analysis to identify transplanted male marrow cells, and shown the long-term stability of the chimeric marrows. Balb/C, BDF1, or CBA-J female hosts (no irradiation) received for 5 consecutive days 40 x 10(6) male cells (per day) of the same strain, and repopulation patterns were observed. Parallel studies were performed using tibia/femur equivalents of normal marrow or marrow from Balb/C mice pretreated 6 days previously with 150 mg/kg 5-fluorouracil (5-FU). Chromosome banding techniques showed that 5% to 46% of marrow cells were male 3 to 9 months posttransplant with normal donor marrow. Southern blot analysis, using the pY2 probe, showed continued engraftment at 21 to 25 months posttransplant, ranging from 15% to 42% male engrafted cells in marrow. Normal donor male marrow engrafted significantly better than 5-FU-pretreated male marrow as shown 1 to 12 months posttransplant in non-cytoablated female recipients. Percentages of male engrafted cells in BM ranged from 23% to 78% for recipients of normal donor marrow and from 0.1% to 39% for recipients of 5-FU marrow. Mean engraftment for 6 mice receiving normal marrow was 38%, whereas that for 6 mice receiving post-5-FU marrow was 8%, as assayed 1 to 3 months posttransplant. At 10 to 12 months, mean engraftment for the normal donor group was 46%, compared with 16% for the 5-FU group. The patterns of engraftment with normal and 5-FU marrow were similar for spleen and thymus. These results show that long-term chimerism can be established after transplantation of normal donor marrow to normal nonirradiated host mice and indicate that marrow spaces do not have to be created for successful engraftment. They suggest that transplanted marrow competes equally with host marrow for marrow space. Finally, these data show that post-5-FU Balb/C male marrow is markedly inferior in the repopulation of Balb/C female host marrow, spleen, and thymus, and suggest that this population of cells may not be the ideal population for gene transfer studies.  相似文献   
77.
The modulation of DNA-protein interactions by methylation of protein-binding sites in DNA and the occurrence in genomic imprinting, X chromosome inactivation, and fragile X syndrome of different methylation patterns in DNA of different chromosomal origin have underlined the need to establish methylation patterns in individual strands of particular genomic sequences. We report a genomic sequencing method that provides positive identification of 5-methylcytosine residues and yields strand-specific sequences of individual molecules in genomic DNA. The method utilizes bisulfite-induced modification of genomic DNA, under conditions whereby cytosine is converted to uracil, but 5-methylcytosine remains nonreactive. The sequence under investigation is then amplified by PCR with two sets of strand-specific primers to yield a pair of fragments, one from each strand, in which all uracil and thymine residues have been amplified as thymine and only 5-methylcytosine residues have been amplified as cytosine. The PCR products can be sequenced directly to provide a strand-specific average sequence for the population of molecules or can be cloned and sequenced to provide methylation maps of single DNA molecules. We tested the method by defining the methylation status within single DNA strands of two closely spaced CpG dinucleotides in the promoter of the human kininogen gene. During the analysis, we encountered in sperm DNA an unusual methylation pattern, which suggests that the high methylation level of single-copy sequences in sperm may be locally modulated by binding of protein factors in germ-line cells.  相似文献   
78.
79.
80.
The purpose of this study was to analyze the expression of B cell growth factor (BCGF) receptors and to elucidate the biologic effects of biochemically purified natural BCGF at the B cell precursor stage of human B lineage lymphoid differentiation. The specific binding of radioiodinated high-mol-wt BCGF (125I-HMW-BCGF) and low-molecular-wt BCGF (125I-LMW-BCGF) to fresh marrow blasts from B cell precursor acute lymphoblastic leukemia (ALL) patients was initially investigated. The estimated number of radioiodinated BCGF molecules bound per blast ranged from undetectable to 24.3 X 10(3) for HMW-BCGF, and from 11.5 X 10(3) to 457.8 X 10(3) for LMW-BCGF. In 3H-TdR incorporation assays, 75% of cases showed a significant response to LMW-BCGF with a median stimulation index of 9.3. By comparison, only 33% of cases showed a significant response to HMW-BCGF with a median stimulation index of 2.4. Subsequently, B cell precursor colony assays were performed to assess and compare the biologic effects of BCGF on leukemic B lineage lymphoid progenitor cells. Among 28 cases studied, 57% responded to both HMW-BCGF and LMW-BCGF, 21% responded only to LMW-BCGF, and the remaining cases showed no proliferative response to either growth factor. The response patterns of virtually pure populations of FACS- sorted leukemic B cell precursors were essentially identical to the proliferative responses of unsorted leukemic B-cell precursors. Synergistic effects between HMW-BCGF and LMW-BCGF were observed in 80% of the cases that responded to both. The numbers of cell-bound radioiodinated BCGF molecules, the stimulation indices, as well as the number of B cell precursor colonies in BCGF-stimulated cultures showed a marked interpatient variation. Patients with structural chromosomal abnormalities (SCAs) involving 12p11-13 or patients with a Philadelphia chromosome showed a greater HMW-BCGF response at the level of leukemic progenitor cells than did other patients (P = .02). The LMW-BCGF response was significantly greater for patients with SCA than for patients without SCA (P = .04). The response of leukemic progenitor cells to HMW-BCGF or LMW-BCGF did not correlate with sex, age, disease status, FAB morphology, WBC at diagnosis, or immunophenotype. To our knowledge, this study represents the first detailed analyses of BCGF receptor expression and BCGF effects in B cell precursor ALL. The data presented provide direct evidence for the expression of functional receptors for both HMW-BCGF and LMW-BCGF in B cell precursor ALL.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号