排序方式: 共有14条查询结果,搜索用时 7 毫秒
11.
Birgit Meyer-Puttlitz Ernst Junker Richard U. Margolis Rene K. Margolis 《The Journal of comparative neurology》1996,366(1):44-54
Using immunocytochemistry, we have compared the distribution of neurocan and phosphacan in the developing central nervous system. At embryonic day 13 (E13), phosphacan surrounds the radially oriented neuroepithelial cells of the telencephalon, whereas neurocan staining of brain parenchyma is very weak. By E16–19, strong staining of both neurocan and phosphacan is seen in the marginal zone and subplate of the neocortex, and phosphacan is present in the ventricular zone and also has a diffuse distribution in other brain areas. Phosphacan is also widely distributed in embryonic spinal cord, where it is strongly expressed throughout the gray and white matter, in the dorsal and ventral nerve roots, and in the roof plate at E13, when neurocan immunoreactivity is seen only in the mesenchyme of the future spinal canal. Neurocan first begins to appear in the spinal cord at E16–19, in the region of ventral motor neurons. In early postnatal and adult cerebellum, neurocan immunoreactivity is seen in the prospective white matter and in the granule cell, Purkinje cell, and molecular layers, whereas phosphacan immunoreactivity is associated with Bergmann glial fibers in the molecular layer and their cell bodies (the Golgi epithelial cells) below the Purkinje cells. These immunocytochemical results demonstrate that the expression of neurocan and phosphacan follow different developmental time courses not only in postnatal brain (as previously demonstrated by radioimmunoassay) but also in the embryonic central nervous system. The specific localization and different temporal expression patterns of these two proteoglycans are consistent with other evidence indicating that they have overlapping or complementary roles in axon guidance, cell interactions, and neurite outgrowth during nervous tissue histogenesis. © 1996 Wiley-Liss, Inc. 相似文献
12.
Molecular Genetic Analysis of Ependymal Tumors : NF2 Mutations and Chromosome 22q Loss Occur Preferentially in Intramedullary Spinal Ependymomas 总被引:6,自引:0,他引:6 下载免费PDF全文
Christian Ebert Markus von Haken Birgit Meyer-Puttlitz Otmar D. Wiestler Guido Reifenberger Torsten Pietsch Andreas von Deimling 《The American journal of pathology》1999,155(2):627-632
Ependymal tumors are heterogeneous with regard to morphology, localization, age at first clinical manifestation, and prognosis. Several molecular alterations have been reported in these tumors, including allelic losses on chromosomes 10, 17, and 22 and mutations in the NF2 gene. However, in contrast to astrocytic gliomas, no consistent molecular alterations have been associated with distinct types of ependymal tumors. To evaluate whether morphological subsets of ependymomas are characterized by specific genetic lesions, we analyzed a series of 62 ependymal tumors, including myxopapillary ependymomas, subependymomas, ependymomas, and anaplastic ependymomas, for allelic losses on chromosome arms 10q and 22q and mutations in the PTEN and NF2 genes. Allelic losses on 10q and 22q were detected in 5 of 56 and 12 of 54 tumors, respectively. Six ependymomas carried somatic NF2 mutations, whereas no mutations were detected in the PTEN gene. All six of the NF2 mutations occurred in ependymomas of WHO grade II and were exclusively observed in tumors with a spinal localization (P = 0.0063). These findings suggest that a considerable fraction of spinal ependymomas are associated with molecular events involving chromosome 22 and that mutations in the NF2 gene may be of primary importance for their genesis. Furthermore, our data suggest that the more favorable clinical course of spinal ependymomas may relate to a distinct pattern of genetic alterations different from that of intracerebral ependymomas. 相似文献
13.
Kulla A Burkhardt K Meyer-Puttlitz B Teesalu T Asser T Wiestler OD Becker AJ 《Acta neuropathologica》2003,105(4):328-332
Malignant transformation of human gliomas is accompanied by extensive proliferation of stromal blood vessels. Recent data suggest mesenchymal transdifferentiation of neoplastic cells in various human cancers, including colon and breast cancer as well as gliosarcoma. In this study, we have analyzed proliferating stromal blood vessels in glioblastoma multiforme for the presence of mutations in the tumor suppressor gene TP53. Using tissue arrays derived from glioblastoma specimens, cases with significant immunohistochemical p53 accumulation were selected for molecular genetic detection of TP53 mutations in exons 5 to 8. None of the tumors included in this series displayed properties of gliosarcoma. Proliferating glomeruloid stromal vessels were isolated by laser microdissection from paraffin sections. In six cases, single-strand conformation polymorphism analysis for mutations of the TP53 gene in stromal blood vessels compared with adjacent tumor cells and subsequent DNA sequencing of the resulting DNA fragments were carried out. Glioblastoma cells of these cases exhibited TP53 mutations in exons 5, 7 and 8. None of these tumors showed TP53 mutations in microdissected samples from glomeruloid vessels. The absence of TP53 mutations in vascular stromal components of glioblastoma multiforme supports the hypothesis that microvascular proliferations originate from the tumor stroma and are not derived from transdifferentiated glioblastoma cells. 相似文献
14.
Impact of genotype and morphology on the prognosis of glioblastoma 总被引:19,自引:0,他引:19
Schmidt MC Antweiler S Urban N Mueller W Kuklik A Meyer-Puttlitz B Wiestler OD Louis DN Fimmers R von Deimling A 《Journal of neuropathology and experimental neurology》2002,61(4):321-328
The recognition of molecular subsets among glioblastomas has raised the question whether distinct mutations in glioblastoma-associated genes may serve as prognostic markers. The present study on glioblastomas (GBM) from 97 consecutively sampled adult patients is based on a clinical, histopathological, immunohistochemical, and molecular genetic analysis. Parameters assessed were age at diagnosis, survival, cell type, proliferation, necrosis, microvascular proliferation, sarcomatous growth, lymphocytic infiltration, thromboses, calcifications, GFAP expression, MIB-1 index, loss of heterozygosity (LOH) of the chromosomal arms 1p, 10p, 10q, 17p, 19q and structural alterations in the TP53, EGFR and PTEN genes. As in previous studies, younger age was significantly associated with better survival. Among the molecular parameters, TP53 mutations and LOH10q emerged as favorable and poor prognostic factors, respectively. TP53 mutations were a favorable prognostic factor independent of whether glioblastomas were primary or secondary. LOH1p or 19q, lesions suspected to be over-represented in long term survivors with malignant glioma, were not associated with better survival. However, the combination of LOH1p and LOH19q defined GBM patients with a significantly better survival. Notably, these patients did not exhibit morphological features reminiscent of oligodendroglioma. These findings indicate that genotyping of glioblastoma may provide clinical information of prognostic importance. 相似文献