首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3018篇
  免费   175篇
  国内免费   19篇
耳鼻咽喉   11篇
儿科学   39篇
妇产科学   31篇
基础医学   406篇
口腔科学   73篇
临床医学   263篇
内科学   535篇
皮肤病学   35篇
神经病学   200篇
特种医学   479篇
外科学   686篇
综合类   9篇
一般理论   1篇
预防医学   79篇
眼科学   41篇
药学   99篇
中国医学   1篇
肿瘤学   224篇
  2024年   5篇
  2023年   56篇
  2022年   85篇
  2021年   169篇
  2020年   83篇
  2019年   104篇
  2018年   141篇
  2017年   104篇
  2016年   127篇
  2015年   117篇
  2014年   149篇
  2013年   170篇
  2012年   265篇
  2011年   244篇
  2010年   133篇
  2009年   109篇
  2008年   162篇
  2007年   172篇
  2006年   128篇
  2005年   107篇
  2004年   85篇
  2003年   78篇
  2002年   95篇
  2001年   25篇
  2000年   19篇
  1999年   17篇
  1998年   16篇
  1997年   9篇
  1996年   14篇
  1995年   10篇
  1994年   5篇
  1993年   6篇
  1992年   13篇
  1991年   11篇
  1990年   11篇
  1989年   7篇
  1988年   7篇
  1987年   7篇
  1983年   4篇
  1982年   4篇
  1980年   6篇
  1979年   5篇
  1977年   6篇
  1931年   5篇
  1928年   6篇
  1927年   4篇
  1923年   4篇
  1902年   3篇
  1896年   3篇
  1893年   5篇
排序方式: 共有3212条查询结果,搜索用时 31 毫秒
81.
82.
The purpose of the study was to measure the demands of off-road cycling via portable spirometry, leg-power output (PO), heart rate (HR) and blood lactate (BLa) concentration. Twenty-four male competitive cyclists (age: 29±7.2 yrs, height: 1.79 ± 0.05 m, body mass: 70.0 ± 4.9 kg, VO2peak: 64.9 ± 7.5 ml·kg-1·min-1) performed simulated mountain bike competitions (COMP) and laboratory tests (LabT). From LabT, we determined maximal workload and first and second ventilatory thresholds (VT1, VT2). A high-performance athlete (HPA) was used for comparison with three groups of subjects with different sport-specific performance levels. Load profiles of COMP were also investigated during uphill, flat and downhill cycling. During the COMP, athletes achieved a mean oxygen uptake (VO2COMP) of 57.0 ± 6.8 ml·kg-1·min-1 vs. 71.1 ml·kg-1·min-1 for the HPA. The POCOMP was 2.66±0.43 W·kg-1 and 3.52 W·kg-1 for the HPA. POCOMP, VO2COMP and HRCOMP were compared to corresponding variables at the VT2 of LabT. LabT variables correlated with racing time (RTCOMP) and POCOMP (p < 0.01 to <0.001; r-0.59 to -0.80). The VO2peak (LabT) accounted for 65% of variance of a single COMP test. VO2COMP, POCOMP and also endurance variables measured from LabTs were found as important determinants for cross-country performance. The high average VO2COMP indicates that a high aerobic capacity is a prerequisite for successful COMP. Findings derived from respiratory gas measures during COMPs might be useful when designing mountain bike specific training.

Key points

  • Cross- country cycling is characterized by high oxygen costs due to the high muscle mass simultaneously working to fulfill the demands of this kind of sports.
  • Heart rate and blood lactate concentration measures are not sensitive enough to assess the energy requirements of COMP. Therefore, respiratory gas and power output measures are helpful to provide new information to physiological profile of cross- country cycling.
  • An excellent cycling-specific capacity is a prerequisite for successful off-road cycling.
  • Data determined from LabT might be utilized to describe semi-specific abilities of MB- athletes on a cycle ergometer, while data originating from COMP might be useful when designing a mountain bike specific training.
Key words: Off-road cycling, mountain biking, oxygen uptake, power output, lactate, heart rate  相似文献   
83.
This angiographically correlated study reports on, for the first time, age- and gender-based distribution of the volumetric calcium score in a large group of patients with suspected coronary artery disease. Volumetric calcium data predicted significant coronary artery disease (>/=50% lumen diameter stenosis) as well as the traditional Agatston score. Exclusion of any calcium was highly accurate in ruling out obstructive disease in symptomatic subjects >/=50 years of age.  相似文献   
84.
This contribution discusses the ablation phenomena observed during laser treatment of carbon fiber-reinforced plastics (CFRPs) with pulsed lasers observed employing laser sources with wavelengths of 355 nm, 1064 nm and 10.6 µm and pulse durations from picoseconds (11 ps) to microseconds (14 µs) are analyzed and discussed. In particular, the threshold fluence of the matrix material epoxy (EP) and the damage threshold of CFRP were calculated. Moreover, two general surface pretreatment strategies are investigated, including selective matrix removal and structure generation through indentation (ablation of both, matrix material and fibers) with a cross-like morphology. The surfaces obtained after the laser treatment are characterized by means of optical and scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy is employed for the analysis of composite and constituent materials epoxy and carbon fibers. As a result, different ablation mechanisms, including evaporation and delamination are observed, depending on the employed laser wavelength and pulse duration. For both 355 nm and 1064 nm wavelength, the laser radiation produces only partial ablation of the carbon fibers due to their higher absorption coefficient compared to the epoxy matrix. Although a selective matrix removal without residues is achieved using the pulsed CO2 laser. Differently, both constituent materials are ablated with the nanosecond pulsed UV laser, producing indentations. The sum of the investigations has shown that existing theories of laser technology, such as the ablation threshold according to Liu et al., can be applied to composite materials only to a limited extent. Furthermore, it has been found that the pronounced heterogeneity of CFRP mostly leads to an inhomogeneous ablation result, both when creating grooves and during selective matrix removal, where the carbon fibers influence the ablation result by their thermal conductivity, depending on fiber direction. Finally, despite the material inhomogeneity, a scanning strategy has been developed to compensate the heterogeneous ablation results regarding structure depth, width and heat affected zone.  相似文献   
85.
86.
NOD.B10 Idd9.3 mice are congenic for the insulin‐dependent diabetes (Idd) Idd9.3 locus, which confers significant type 1 diabetes (T1D) protection and encodes 19 genes, including microRNA (miR)‐34a, from T1D‐resistant C57BL/10 mice. B cells have been shown to play a critical role in the priming of autoantigen‐specific CD4+ T cells in T1D pathogenesis in non‐obese diabetic (NOD) mice. We show that early B‐cell development is impaired in NOD.B10 Idd9.3 mice, resulting in the profound reduction of transitional and mature splenic B cells as compared with NOD mice. Molecular analysis revealed that miR‐34a expression was significantly higher in B‐cell progenitors and marginal zone B cells from NOD.B10 Idd9.3 mice than in NOD mice. Furthermore, miR‐34a expression in these cell populations inversely correlated with levels of Foxp1, an essential regulator of B‐cell lymphopoiesis, which is directly repressed by miR‐34a. In addition, we show that islet‐specific CD4+ T cells proliferated inefficiently when primed by NOD.B10 Idd9.3 B cells in vitro or in response to endogenous autoantigen in NOD.B10 Idd9.3 mice. Thus, Idd9.3‐encoded miR‐34a is a likely candidate in negatively regulating B‐cell lymphopoiesis, which may contribute to inefficient expansion of islet‐specific CD4+ T cells and to T1D protection in NOD.B10 Idd9.3 mice.  相似文献   
87.
Vascular remodeling is a feature of sustained inflammation in which capillaries enlarge and acquire the phenotype of venules specialized for plasma leakage and leukocyte recruitment. We sought to determine whether neutrophils are required for vascular remodeling in the respiratory tract by using Mycoplasma pulmonis infection as a model of sustained inflammation in mice. The time course of vascular remodeling coincided with the influx of neutrophils during the first few days after infection and peaked at day 5. Depletion of neutrophils with antibody RB6-8C5 or 1A8 reduced neutrophil influx and vascular remodeling after infection by about 90%. Similarly, vascular remodeling after infection was suppressed in Cxcr2−/− mice, in which neutrophils adhered to the endothelium of venules but did not extravasate into the tissue. Expression of the venular adhesion molecule P-selectin increased in endothelial cells from day 1 to day 3 after infection, as did expression of the Cxcr2-receptor ligands Cxcl1 and Cxcl2. Tumor necrosis factor α (TNFα) expression increased more than sixfold in the trachea of wild-type and Cxcr2−/− mice, but intratracheal administration of TNFα did not induce vascular remodeling similar to that seen in infection. We conclude that neutrophil influx is required for remodeling of capillaries into venules in the airways of mice with Mycoplasma infection and that TNFα signaling is necessary but not sufficient for vascular remodeling.Neutrophils are key effector cells of innate immunity that rapidly arrive at sites of tissue injury to kill bacteria and interact with macrophages and other cells to orchestrate a coordinated immune cell and cytokine response to injury.1–4 Neutrophils are involved in many inflammatory diseases of the airways and lung, including pneumonia, acute lung injury, sepsis, asthma, cystic fibrosis, bronchitis, and chronic obstructive lung disease,5 also contribute to tissue damage in inflammatory conditions of other organs, and play a role in arterial remodeling in atherosclerosis.4The signals and events that bring neutrophils to sites of inflammation are well characterized.6–8 These include expression of endothelial cell adhesion molecules to induce rolling and firm attachment, followed by extravasation into tissues where they release cytokines and other products that can kill bacteria and promote tissue remodeling. The dominant mechanism driving neutrophil influx may be organ-specific.9,10 Blood vessels of the microcirculation undergo numerous changes in sustained inflammation, and these include structural and functional remodeling of endothelial cells and pericytes.11–14 Among these changes, capillaries transform into venules that support plasma leakage and leukocyte influx. The contribution of neutrophils to this remodeling is not well understood. Circumferential vessel enlargement is a prominent feature of vascular remodeling–sustained airway inflammation15–23 and is distinct from more familiar and better-documented types of sprouting angiogenesis.24We asked whether incoming neutrophils contribute to the vascular remodeling, with the thought that the initial wave of leukocyte influx could render blood vessels more efficient for leukocyte adhesion and transmigration. Although leukocyte influx is known to accompany blood vessel remodeling,15,18,22 it is unknown whether there is a causal relationship and, if so, what is the underlying mechanism? Neutrophils are attractive candidates for contributing to vascular remodeling because they are among the first leukocytes to enter inflamed tissues4,6,25 and can produce cytokines, growth factors, proteases, and reactive oxygen species that have profound vascular effects.2–4,26With this background, we sought to determine whether neutrophils are essential for the vascular remodeling that occurs soon after Mycoplasma pulmonis infection, when capillaries transform into venules. In particular, we asked whether neutrophil influx coincides spatially and temporally with vascular remodeling, can vascular remodeling be prevented by neutrophil depletion, and if Cxcr2 signaling is required for the neutrophil influx that accompanies vascular remodeling?To address these questions we examined the relationship between neutrophil influx and vascular remodeling during the first week after M. pulmonis infection of the respiratory tract of mice. The approach was to compare the time course of neutrophil influx and vascular remodeling in the trachea and then determine whether the remodeling was blocked by neutrophil depletion by either of two different antineutrophil antibodies: RB6-8C5 or 1A8. We also tested whether vascular remodeling was prevented by genetic deletion of Cxcr2, which mediates the actions of the chemotactic chemokines Cxcl1 and Cxcl2, which bring neutrophils into inflamed tissues. Because previous studies have shown that vascular remodeling was inhibited by blocking tumor necrosis factor α (TNFα) signaling,19 we asked whether TNFα expression was increased in wild-type and Cxcr2−/− mice and whether intratracheal administration of TNFα was sufficient to induce vascular remodeling similar to that seen after infection. Other studies examined the expression of the Cxcr2 ligands, Cxcl1 and Cxcl2. Together, the experiments showed that neutrophil influx was required for vascular remodeling after M. pulmonis infection, and that TNF signaling was necessary but not sufficient for vascular remodeling.  相似文献   
88.
Standard genetic approaches allow the production of protein composites by fusion of polypeptides in head-to-tail fashion. Some applications would benefit from constructions that are genetically impossible, such as the site-specific linkage of proteins via their N or C termini, when a remaining free terminus is required for biological activity. We developed a method for the production of N-to-N and C-to-C dimers, with full retention of the biological activity of both fusion partners and without inflicting chemical damage on the proteins to be joined. We use sortase A to install on the N or C terminus of proteins of interest the requisite modifications to execute a strain-promoted copper-free cycloaddition and show that the ensuing ligation proceeds efficiently. Applied here to protein-protein fusions, the method reported can be extended to connecting proteins with any entity of interest.  相似文献   
89.
90.

Objectives

Albumin has a known capability to modulate free serum concentrations of proteins produced by tumour cells. The technique of spin probe labelling of albumin followed by electron paramagnetic resonance (EPR) spectroscopy may allow identification of these structural and functional changes, which regularly occur as consequence of binding tumour metabolites as ligands. The aim of the present study was a proof of principle evaluation of EPR-analysis of peripheral blood samples as possible predictor for oral squamous cell carcinoma (OSCC).

Material and methods

The present study is designed as gender-matched cohort. EPR was tested after retrieval of peripheral blood samples. The study group is represented by 32 patients with OSCC, and the control group consisted of 30 healthy patients.

Results

Overall analysis exhibited a diagnostic sensitivity of 72% (23/32 OSCC group) and a specificity of 80% (24/30 control group). Subgroup analysis revealed ten patients with elevated leukocytes (>10,000/μl; n?=?9 [OSCC group] and n?=?1 [control group]). After exclusion of patients with elevated white blood cell count, sensitivity considerably increased to 87% and specificity to 83%.

Conclusion

EPR analysis of peripheral blood samples might be appropriate to support the clinician in primary and follow-up diagnosis of potential tumours such as OSCC. Unfortunately, subgroup analysis characterises the method vulnerable to inflammation.

Clinical relevance

Nevertheless, our preliminary results are intriguing, as diagnosis of OSCC appears possible by simple peripheral blood examination. Thus, further appraisal of this novel method with inclusion of different tumour entities, systemic conditions and inflammation in a larger study population appears highly valuable.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号