首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   1篇
基础医学   4篇
口腔科学   7篇
临床医学   3篇
内科学   2篇
神经病学   10篇
外科学   1篇
药学   4篇
  2023年   1篇
  2021年   2篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2014年   1篇
  2012年   4篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2007年   2篇
  2004年   1篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1992年   2篇
  1990年   1篇
排序方式: 共有31条查询结果,搜索用时 0 毫秒
21.
D Lobner  P Lipton 《Neuroscience letters》1990,117(1-2):169-174
Release of glutamate from brain cells is increased during ischemia and is thought to be involved in ischemic damage. In rat hippocampal slices the release of glutamate during 'in vitro ischemia' (anoxia without glucose) is shown to be blocked by two groups of compounds: non-competitive N-methyl-D-aspartate (NMDA) antagonists and sigma ligands. The effects are selective for the ischemic glutamate release, which is independent of extracellular Ca2+. High K+, Ca2+ dependent, induced release of glutamate is not inhibited. NMDA receptor blockade normally does not prevent ischemic transmission damage in the rat hippocampal slice. However, when ischemic glutamate release is attenuated, NMDA receptor antagonists do prevent the damage. This indicates that high levels of glutamate may cause damage via non-NMDA as well as NMDA receptors.  相似文献   
22.
β-N-methylamino-l-alanine (BMAA) is a non-protein amino acid implicated in the neurodegenerative disease amyotrophic lateral sclerosis/Parkinson–dementia complex (ALS/PDC) on Guam. BMAA has recently been discovered in the brains of Alzheimer's patients in Canada and is produced by various species of cyanobacteria around the world. These findings suggest the possibility that BMAA may be of concern not only for specific groups of Pacific Islanders, but for a much larger population. Previous studies have indicated that BMAA can act as an excitotoxin by acting on the NMDA receptor. We have shown that the mechanism of neurotoxicity is actually three-fold; it involves not only direct action on the NMDA receptor, but also activation of metabotropic glutamate receptor 5 (mGluR5) and induction of oxidative stress. We now explore the mechanism by which BMAA activates the mGluR5 receptor and induces oxidative stress. We found that BMAA inhibits the cystine/glutamate antiporter (system Xc) mediated cystine uptake, which in turn leads to glutathione depletion and increased oxidative stress. BMAA also appears to drive glutamate release via system Xc and this glutamate induces toxicity through activation of the mGluR5 receptor. Therefore, the oxidative stress and mGluR5 activation induced by BMAA are both mediated through action at system Xc. The multiple mechanisms of BMAA toxicity, particularly the depletion of glutathione and enhanced oxidative stress, may account for its ability to induce complex neurodegenerative diseases.  相似文献   
23.
24.
Recent reports have suggested a role for group II metabotropic glutamate receptors (mGluRs) in the attenuation of excitotoxicity. Here we examined the effects of the recently available group II agonist (+)-2-Aminobicyclo[3.1.0]hexane-2-6-dicarboxylic acid (LY354740) on N-methyl-D-aspartate (NMDA)-induced excitotoxic neuronal death, as well as on hypoxic-ischemic neuronal death both in vitro and in vivo. At concentrations shown to be selective for group II mGluRs expressed in cell lines (0.1-100 nM), LY354740 did not attenuate NMDA-mediated neuronal death in vitro or in vivo. Furthermore, LY354740 did not attenuate oxygen-glucose deprivation-induced neuronal death in vitro or ischemic infarction after transient middle cerebral artery occlusion in rats. In addition, the neuroprotective effect of another group II agonist, (S)-4-carboxy-3-phenylglycine (4C3HPG), which has shown injury attenuating effects both in vitro and in vivo, was not blocked by the group II antagonists (2 S)-alpha-ethylglutamic acid (EGLU), (RS)-alpha-methyl-4-sulphonophenylglycine (MSPG), or the group III antagonist (S)-alpha-methyl-3-carboxyphenylalanine (MCPA), suggesting that this neuroprotection may be mediated by other effects such as upon group I mGluRs.  相似文献   
25.
OBJECTIVE. To evaluate the effects of intraarticular injection of recombinant human interleukin-1 beta (IL-1 beta) on levels of proteoglycans, stromelysin, and leukocytes in rabbit synovial fluid (SF), and to determine the effects of leukocyte depletion on SF proteoglycan and stromelysin levels. METHODS. Levels of leukocytes and of proteoglycans, stromelysin, and collagenase were evaluated 12 hours after the intraarticular injection of various doses of IL-1, and over a 24-hour period after injection at a single dose level. We used a monoclonal antibody (MAb) against leukocyte integrins, which markedly depressed leukocyte accumulation in SF, to evaluate the role of synovial leukocytes on IL-1-induced increases in SF proteoglycan and stromelysin levels. RESULTS. Levels of both proteoglycans and stromelysin increased in the IL-1-injected joints between 4 hours and 24 hours after the injection of a single 200-ng dose of IL-1. The highest levels of stromelysin and proteoglycans were achieved with IL-1 doses greater than or equal to 100 ng. Infiltration of polymorphonuclear cells (PMN) into the joint fluid of the IL-1-injected rabbits also increased, in a dose-dependent manner. Treatment of rabbits with MAb 1B4 markedly reduced infiltration of PMN into the joint, without affecting either stromelysin or proteoglycan levels. CONCLUSION. Taken together, the data suggest that there is a coordinate increase in SF stromelysin and proteoglycan levels in rabbits injected with IL-1, and that leukocytes play a minimal role in the accumulation of proteoglycans and stromelysin in the SF.  相似文献   
26.
Activation of ion channel-linked glutamate receptors, especially N-methyl-d -aspartate (NMDA) receptors, mediates the excitotoxic effects of glutamate upon central neurons. We examined the hypothesis that activation of group I metabotropic glutamate receptors (mGluRs) would increase NMDA receptor-mediated cortical neuronal death. Addition of the selective group I mGluR agonists, dihydroxyphenylglycine (DHPG) or trans-azetidine-2,4-dicarboxylic acid (t-ADA) potentiated NMDA-induced neuronal death, and application of the group I mGluR-selective antagonist, aminoindan-1,5-dicarboxylic acid (AIDA), as well as the non-selective antagonists methyl-4-carboxyphenylglycine (MCPG) or 4-carboxyphenylglycine (4CPG) reduced NMDA- and kainate-induced neuronal death in murine cortical cultures. The pro-excitotoxic effect of group I mGluR activation may be mediated largely by enhancement of glutamate release, as DHPG potentiated high potassium-stimulated glutamate release, and the protective effects of both AIDA and MCPG were abolished when NMDA and alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid (AMPA) receptors were blocked immediately after toxic NMDA receptor overstimulation. The present data support the possibility that antagonizing group I mGluRs may be a useful strategy for attenuating excitotoxic neuronal death in certain disease states.  相似文献   
27.
Calcitonin potentiates oxygen-glucose deprivation-induced neuronal death   总被引:1,自引:0,他引:1  
Calcitonin is a hormone that decreases plasma calcium through inhibition of osteolysis. It is used in the treatment of osteoporosis and other bone disorders. Salmon calcitonin is typically utilized in individuals for whom use of estrogen is contraindicated, for example, women at high risk for breast cancer. In addition to actions on bone, calcitonin may have effects on the central nervous system. Receptors for calcitonin are present on central neurons, and salmon calcitonin has been shown to alter neuronal activity. Since salmon calcitonin is used clinically, and it can have actions on neurons, the present studies were designed to determine whether salmon calcitonin could alter death of cortical neurons. The effects of salmon calcitonin on neuronal death induced by exposure of murine cortical cultures to serum deprivation, staurosporine, oxygen-glucose deprivation, kainate, and NMDA were tested. Salmon calcitonin had no effect on apoptotic cell death in cortical cultures. However, acute treatment with salmon calcitonin (1-1000 nM) caused significant potentiation of neuronal death induced by oxygen-glucose deprivation. Similarly, salmon calcitonin potentiated cell death induced by exposure to kainate. In contrast, it did not potentiate cell death induced by exposure to NMDA. In fact, addition of a high concentration (1000 nM) of salmon calcitonin attenuated NMDA toxicity. These results indicate that calcitonin is not a survival factor for cortical neurons; however, it can alter excitotoxic cell death. The most interesting, and disturbing, effect is the ability of low concentrations of salmon calcitonin to potentiate oxygen-glucose deprivation-induced cell death.  相似文献   
28.
Neuronal apoptosis induced in cortical cultures by exposure to serum deprivation, staurosporine, nifedipine, or C2-ceramide was assayed by lactate dehydrogenase (LDH) release or inhibition of 3-(4, 5-dimethylthiazol-2-yl)2,5-diphenyl-tetrazolium bromide (MTT) reduction. The protective effects of neurotrophin-4, Z-Val-Ala-Asp-fluoromethylketone (ZVAD), and cycloheximide against each insult were also assayed. The level of injury for each insult was similar whether determined by LDH release or inhibition of MTT reduction, but effects of anti-apoptotic agents were assay dependent. ZVAD and cycloheximide protected neurons from nifedipine-induced death, when assayed by LDH release, but not MTT reduction. In contrast, only cycloheximide attenuated C2-ceramide-induced LDH release, while ZVAD and cycloheximide actually enhanced the C2-ceramide induced inhibition of MTT reduction. Counting of trypan blue positive cells provided results consistent with values obtained using the LDH assay. These results indicate that both LDH release and MTT reduction accurately determine apoptotic death of neurons. However, the MTT assay does not always correctly quantify neuroprotective effects, this likely reflects differences in the point of the death pathway that the neuroprotective agents act. Therefore, while the MTT assay is of limited value in assessing the efficacy of neuroprotective strategies, it may provide information regarding whether specific anti-apoptotic agents act up or downstream of mitochondrial dysfunction.  相似文献   
29.
The main action of organophosphorous insecticides is generally believed to be the inhibition of acetylcholinesterase (AChE). However, these compounds also inhibit many other enzymes, any of which may play a role in their toxicity. We tested the neurotoxic mechanism of two organophosphorous insecticides, chlorpyrifos and diazinon in primary cortical cultures. Exposure to the insecticides caused a concentration-dependent toxicity that could not be directly attributed to the oxon forms of the compounds which caused little toxicity but strongly inhibited AChE. Addition of 1 mM acetylcholine or carbachol actually attenuated the toxicity of chlorpyrifos and diazinon, and the muscarinic receptor antagonist, atropine, and the nicotinic receptor antagonist, mecamylamine, did not attenuate the toxicity of either insecticide. These results strongly suggest that the organophosphorous toxicity observed in this culture system is not mediated by buildup of extracellular acetylcholine resulting from inhibition of AChE. The toxicity of chlorpyrifos was attenuated by antagonists of either the NMDA or AMPA/kainate-type glutamate receptors, but the cell death was potentiated by the caspase inhibitor ZVAD. Diazinon toxicity was not affected by glutamate receptor antagonists, but was attenuated by ZVAD. Chlorpyrifos induced diffuse nuclear staining characteristic of necrosis, while diazinon induced chromatin condensation characteristic of apoptosis. Also, chlorpyrifos exposure increased the levels of extracellular glutamate, while diazinon did not. The results suggest two different mechanisms of neurotoxicity of the insecticides, neither one of which involved acetylcholine. Chlorpyrifos induced a glutamate-mediated excitotoxicity, while diazinon induced apoptotic neuronal death.  相似文献   
30.
The crystallizable fragment (Fc) of the immunoglobulin class G (IgG) is a very attractive scaffold for the design of novel therapeutics due to its quality of uniting all essential antibody functions. This article reviews the functionalization of this homodimeric glycoprotein by diversification of structural loops of CH3 domains for the design of Fcabs, i.e. antigen-binding Fc proteins. It reports the design of libraries for the selection of nanomolar binders with wildtype-like in vivo half-life and correlation of Fc receptor binding and ADCC. The in vitro and preclinical biological activity of selected Fcabs is compared with that of clinically approved antibodies. Recently, the great potential of the scaffold for the development of therapeutics for clinical use has been shown when the HER2-binding Fcab FS102 entered clinical phase I. Furthermore, methods for the engineering of biophysical properties of Fcabs applicable to proteins in general are presented as well as the different approaches in the design of heterodimeric Fc-based scaffolds used in the generation of bispecific monoclonal antibodies. Finally, this work critically analyzes and compares the various efforts in the design of highly diverse and functional libraries that have been made in the engineering of IgG1-Fc and structurally similar scaffolds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号