首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2158篇
  免费   155篇
  国内免费   9篇
耳鼻咽喉   28篇
儿科学   46篇
妇产科学   61篇
基础医学   266篇
口腔科学   119篇
临床医学   231篇
内科学   454篇
皮肤病学   41篇
神经病学   162篇
特种医学   63篇
外科学   269篇
综合类   8篇
一般理论   1篇
预防医学   209篇
眼科学   29篇
药学   166篇
中国医学   14篇
肿瘤学   155篇
  2024年   7篇
  2023年   29篇
  2022年   78篇
  2021年   122篇
  2020年   76篇
  2019年   93篇
  2018年   97篇
  2017年   70篇
  2016年   88篇
  2015年   91篇
  2014年   120篇
  2013年   139篇
  2012年   190篇
  2011年   189篇
  2010年   105篇
  2009年   77篇
  2008年   130篇
  2007年   123篇
  2006年   105篇
  2005年   107篇
  2004年   100篇
  2003年   71篇
  2002年   54篇
  2001年   4篇
  2000年   1篇
  1999年   8篇
  1998年   3篇
  1997年   2篇
  1996年   5篇
  1995年   6篇
  1992年   3篇
  1991年   4篇
  1988年   2篇
  1985年   3篇
  1984年   2篇
  1983年   3篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1978年   2篇
  1977年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1969年   2篇
  1962年   1篇
排序方式: 共有2322条查询结果,搜索用时 15 毫秒
101.
The human leukocyte antigen G (HLA-G) is a non-classical HLA class I molecule predominantly expressed in trophoblastic placental cells to protect the fetus during pregnancy. However, evidence has shown that this molecule may be implicated in the immune escape mechanism of tumor cells. Thus, the aim of this study was to evaluate the frequency of 14-bp insertion/deletion HLA-G polymorphism, as well as the expression of this molecule in patients with invasive breast ductal carcinoma (IDC). A significant association between the expression of HLA-G and the presence of metastasis in lymph nodes (p = 0.01) was observed and the expression of HLA-G was significantly higher in patients with shorter survival time (p = 0.03). The analysis suggests that the polymorphism observed in patients with IDC may be inducing a higher expression of the HLA-G molecule, which may possibly contribute to shorter survival time and a worse clinical prognosis for such patients.  相似文献   
102.
103.
Fluoride varnishes play an important role in the prevention of dental caries, promoting the inhibition of demineralization and the increase of remineralization.

Objective

This study aimed to analyze the amount of fluoride released into water and artificial saliva from experimental TiF4 and NaF varnishes, with different concentrations, for 12 h.

Material and Methods

Fluoride varnishes were applied on acrylic blocks and then immersed in 10 ml of deionized water and artificial saliva in polystyrene bottles. The acrylic blocks were divided in seven groups (n=10): 1.55% TiF4 varnish (0.95% F, pH 1.0); 3.10% TiF4 varnish (1.90% F, pH 1.0); 3.10% and 4% TiF4 varnish (2.45% F, pH 1.0); 2.10% NaF varnish (0.95% F, pH 5.0); 4.20% NaF varnish (1.90% F, pH 5.0); 5.42% NaF varnish (2.45% F, pH 5.0) and control (no treatment, n=5). The fluoride release was analyzed after 1/2, 1, 3, 6, 9 and 12 h of exposure. The analysis was performed using an ion-specific electrode coupled to a potentiometer. Two-way ANOVA and Bonferroni''s test were applied for the statistical analysis (p<0.05).

Results

TiF4 varnishes released larger amounts of fluoride than NaF varnishes during the first 1/2 h, regardless of their concentration; 4% TiF4 varnish released more fluoride than NaF varnishes for the first 6 h. The peak of fluoride release occurred at 3 h. There was a better dose-response relationship among the varnishes exposed to water than to artificial saliva.

Conclusions

The 3.10% and 4% TiF4 -based varnishes have greater ability to release fluoride into water and artificial saliva compared to NaF varnish; however, more studies must be conducted to elucidate the mechanism of action of TiF4 varnish on tooth surface.  相似文献   
104.
105.
Untargeted metabolomics is a powerful tool in chemical fingerprinting. It can be applied in phytochemistry to aid species identification, systematic studies and quality control of bioproducts. This approach aims to produce as much chemical information as possible, without focusing on any specific chemical class, thus, requiring extensive chemometric effort. This study aimed to evaluate the feasibly of an untargeted metabolomics method in phytochemistry by a study case of the Copaifera genus (Fabaceae). This genus contains significant medicinal species used worldwidely. Copaifera exploitation issues include a lack of chemical data, ambiguous species identification methods and absence of quality control for its bioproducts. Different organs of five Copaifera species were analysed by UHPLC-HRMS/MS, GNPS platform and chemometric tools. Untargeted metabolomics enabled the identification of 19 chemical markers and 29 metabolites, distinguishing each sample by species, plant organs, and biome type. Chemical markers were classified as flavonoids, terpenoids and condensed tannins. The applied method provided reliable information about species chemodiversity using fast workflow with little sampling size. The untargeted approach by UHPLC-HRMS/MS proved to be a promising tool for species identification, pharmacological prospecting and in the future for the quality control of extracts used in the manufacture of bioproducts.

UHPLC-HRMS/MS untargeted metabolomics enabled distinction of Copaifera extracts by species, vegetative parts, and biome of origin based on 19 chemical markers.  相似文献   
106.
107.
108.
Accurate modeling of intratumor heterogeneity presents a bottleneck against drug testing. Flexibility in a preclinical platform is also desirable to support assessment of different endpoints. We established the model system, OHC-NB1, from a bone marrow metastasis from a patient diagnosed with MYCN-amplified neuroblastoma and performed whole-exome sequencing on the source metastasis and the different models and passages during model development (monolayer cell line, 3D spheroid culture and subcutaneous xenograft tumors propagated in mice). OHC-NB1 harbors a MYCN amplification in double minutes, 1p deletion, 17q gain and diploid karyotype, which persisted in all models. A total of 80–540 single-nucleotide variants (SNVs) was detected in each sample, and comparisons between the source metastasis and models identified 34 of 80 somatic SNVs to be propagated in the models. Clonal reconstruction using the combined copy number and SNV data revealed marked clonal heterogeneity in the originating metastasis, with four clones being reflected in the model systems. The set of OHC-NB1 models represents 43% of somatic SNVs and 23% of the cellularity in the originating metastasis with varying clonal compositions, indicating that heterogeneity is partially preserved in our model system.  相似文献   
109.
110.
Background: The gut microbiome is important in modulating health in childhood. Metal exposures affect multiple health outcomes, but their ability to modify bacterial communities in children is poorly understood.Objectives: We assessed the associations of childhood and perinatal blood metal levels with childhood gut microbiome diversity, structure, species, gene family-inferred species, and potential pathway alterations.Methods: We assessed the gut microbiome using 16S rRNA gene amplicon sequencing and shotgun metagenomic sequencing in stools collected from 6- to 7-year-old children participating in the GESTation and Environment (GESTE) cohort study. We assessed blood metal concentrations [cadmium (Cd), manganese (Mn), mercury (Hg), lead (Pb), selenium (Se)] at two time points, namely, perinatal exposures at delivery (N=70) and childhood exposures at the 6- to 7-y follow-up (N=68). We used multiple covariate-adjusted statistical models to determine microbiome associations with continuous blood metal levels, including linear regression (Shannon and Pielou alpha diversity indexes), permutational multivariate analysis of variance (adonis; beta diversity distance matrices), and multivariable association model (MaAsLin2; phylum, family, species, gene family-inferred species, and pathways).Results: Children’s blood Mn and Se significantly associated with microbiome phylum [e.g., Verrucomicrobiota (coef=0.305, q=0.031; coef=0.262, q=0.084, respectively)] and children’s blood Mn significantly associated with family [e.g., Eggerthellaceae (coef=0.228, q=0.052)]-level differences. Higher relative abundance of potential pathogens (e.g., Flavonifractor plautii), beneficial species (e.g., Bifidobacterium longum, Faecalibacterium prausnitzii), and both potentially pathogenic and beneficial species (e.g., Bacteriodes vulgatus, Eubacterium rectale) inferred from gene families were associated with higher childhood or perinatal blood Cd, Hg, and Pb (q<0.1). We found significant negative associations between childhood blood Pb and acetylene degradation pathway abundance (q<0.1). Finally, neither perinatal nor childhood metal concentrations were associated with children’s gut microbial inter- and intrasubject diversity.Discussion: Our findings suggest both long- and short-term associations between metal exposure and the childhood gut microbiome, with stronger associations observed with more recent exposure. Future epidemiologic analyses may elucidate whether the observed changes in the microbiome relate to children’s health. https://doi.org/10.1289/EHP9674  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号