首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2327篇
  免费   131篇
  国内免费   17篇
耳鼻咽喉   29篇
儿科学   57篇
妇产科学   85篇
基础医学   277篇
口腔科学   28篇
临床医学   505篇
内科学   390篇
皮肤病学   33篇
神经病学   186篇
特种医学   30篇
外科学   174篇
综合类   20篇
一般理论   3篇
预防医学   327篇
眼科学   13篇
药学   174篇
中国医学   2篇
肿瘤学   142篇
  2024年   4篇
  2023年   19篇
  2022年   28篇
  2021年   44篇
  2020年   33篇
  2019年   65篇
  2018年   56篇
  2017年   37篇
  2016年   48篇
  2015年   57篇
  2014年   56篇
  2013年   112篇
  2012年   178篇
  2011年   206篇
  2010年   129篇
  2009年   113篇
  2008年   173篇
  2007年   176篇
  2006年   179篇
  2005年   169篇
  2004年   154篇
  2003年   109篇
  2002年   127篇
  2001年   17篇
  2000年   11篇
  1999年   12篇
  1998年   24篇
  1997年   28篇
  1996年   18篇
  1995年   12篇
  1994年   16篇
  1993年   5篇
  1992年   8篇
  1991年   4篇
  1990年   4篇
  1989年   5篇
  1987年   2篇
  1986年   4篇
  1985年   4篇
  1984年   4篇
  1983年   3篇
  1982年   4篇
  1981年   2篇
  1980年   4篇
  1979年   3篇
  1978年   3篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
排序方式: 共有2475条查询结果,搜索用时 0 毫秒
41.
42.
The immunogenicity of recombinant protein or anti-viral DNA vaccines can be significantly improved by the addition of tandem copies of the complement fragment C3d. We sought to determine if the efficacy of a circumsporozoite protein (CSP)-based DNA vaccine delivered to mouse skin by gene gun was improved by using this strategy. Instead, we found that C3d suppressed the protective immunity against Plasmodium berghei malaria infection and deviated immunity, most notably by suppressing the induction of antibodies specific for the CSP C-terminal flanking sequence and by suppressing the induction of CSP-specific IL-4-producing spleen cells. We further showed that C3d bound to the C-terminal flanking sequence of the CSP, which may explain the immune deviation observed in CS/C3d chimeric antigen. We have thus identified C3d-mediated epitope masking and shifting of both the humoral and cellular immune responses as a potential novel escape mechanism, which plasmodia may use to divert the induction of protective immunity.  相似文献   
43.
The transmembrane semaphorin protein Sema6A is broadly expressed in the developing nervous system. Sema6A repels several classes of developing axons in vitro and contributes to thalamocortical axon guidance in vivo. Here we show that during cerebellum development, Sema6A is selectively expressed by postmitotic granule cells during their tangential migration in the deep external granule cell layer, but not during their radial migration. In Sema6A-deficient mice, many granule cells remain ectopic in the molecular layer where they differentiate and are contacted by mossy fibers. The analysis of ectopic granule cell morphology in Sema6a-/- mice, and of granule cell migration and neurite outgrowth in cerebellar explants, suggests that Sema6A controls the initiation of granule cell radial migration, probably through a modulation of nuclear and/or soma translocation. Finally, the analysis of mouse chimeras suggests that this function of Sema6A is primarily non-cell-autonomous.  相似文献   
44.
Animal and human studies suggest that both secretory PLA2 (sPLA2)-V and sPLA2-IIA (encoded, respectively, by the neighbouring PLA2G5 and PLA2G2A genes) contribute to atherogenesis. Elevated plasma sPLA2-IIA predicts coronary heart disease (CHD) risk, but no mass assay for sPLA2-V is available. We previously reported that tagging single nucleotide polymorphism (tSNP) haplotypes of PLA2G2A are strongly associated with sPLA2-IIA mass, but not lipid levels. Here, we use tSNPs of the sPLA2-V gene to investigate the association of PLA2G5 with CHD risk markers. Seven PLA2G5 tSNPs genotypes, explaining >92% of the locus genetic variability, were determined in 519 patients with Type II diabetes (in whom PLA2G2A tSNP data was available), and defined seven common haplotypes (frequencies >5%). PLA2G5 and PLA2G2A tSNPs showed linkage disequilibrium (LD). Compared to the common PLA2G5 haplotype, H1 (frequency 34.9%), haplotypes H2-7 were associated with overall higher plasma LDL (P < 0.00004) and total cholesterol (P < 0.00003) levels yet lower oxLDL/LDL (P = 0.006) and sPLA2-IIA mass (P = 0.04), probably reflecting LD with PLA2G2A. Intronic tSNP (rs11573248), unlikely itself to be functional, distinguished H1 from LDL-raising haplotypes and may mark a functional site. In conclusion, PLA2G5 tSNP haplotypes demonstrate an association with total and LDL cholesterol and oxLDL/LDL, not seen with PLA2G2A, thus confirming distinct functional roles for these two sPLA2s.  相似文献   
45.
The rapid advancement of high-resolution DNA copy number assessment methods revealed the significant contribution of submicroscopic genetic imbalances to abnormal phenotypes, including mental retardation. In order to detect submicroscopic genetic imbalances, we have screened 20 families with X-linked mental retardation (XLMR) using a chromosome X-specific array-MAPH platform with median resolution of 238 kb. Among the 20 families, 18 were experimental, as they were not previously screened with any microarray method, and two were blind controls with known aberrations, as they were previously screened by array-CGH. This study presents the first clinical application of chromosome X-specific array-MAPH methodology. The screening of 20 affected males from 20 unrelated XLMR families resulted in the detection of an unknown deletion, spanning a region of 7–23 kb. Family studies and population screening demonstrated that the detected deletion is an unknown rare copy number variant. One of the control samples, carrying approximately 6-Mb duplication was correctly identified, moreover it was found to be interrupted by a previously unknown 19 kb region of normal copy number. The second control 50 kb deletion was not identified, as this particular region was not covered by array-MAPH probes. This study demonstrates that the chromosome X-specific array-MAPH platform is a valuable tool for screening patients with XLMR, or other X-linked disorders, and emerges the need for introducing new high-resolution screening methods for the detection of genetic imbalances.  相似文献   
46.
SNP rs498055 in the predicted gene LOC439999 on chromosome 10 was recently identified as being strongly associated with late-onset Alzheimer disease (LOAD). This SNP falls within a chromosomal region that has engendered continued interest generated from both preliminary genetic linkage and candidate gene studies. To independently evaluate this interesting candidate SNP we examined four independent datasets, three family-based and one case-control. All the cases were late-onset AD Caucasian patients with minimum age at onset ≥ 60 years. None of the three family samples or the combined family-based dataset showed association in either allelic or genotypic family-based association tests at p < 0.05. Both original and OSA two-point LOD scores were calculated. However, there was no evidence indicating linkage no matter what covariates were applied (the highest LOD score was 0.82). The case-control dataset did not demonstrate any association between this SNP and AD (all p-values > 0.52). Our results do not confirm the previous association, but are consistent with a more recent negative association result that used family-based association tests to examine the effect of this SNP in two family datasets. Thus we conclude that rs498055 is not associated with an increased risk of LOAD.  相似文献   
47.
We developed a novel digital tomosynthesis (DTS) reconstruction method using a deformation field map to optimally estimate volumetric information in DTS images. The deformation field map is solved by using prior information, a deformation model, and new projection data. Patients' previous cone-beam CT (CBCT) or planning CT data are used as the prior information, and the new patient volume to be reconstructed is considered as a deformation of the prior patient volume. The deformation field is solved by minimizing bending energy and maintaining new projection data fidelity using a nonlinear conjugate gradient method. The new patient DTS volume is then obtained by deforming the prior patient CBCT or CT volume according to the solution to the deformation field. This method is novel because it is the first method to combine deformable registration with limited angle image reconstruction. The method was tested in 2D cases using simulated projections of a Shepp-Logan phantom, liver, and head-and-neck patient data. The accuracy of the reconstruction was evaluated by comparing both organ volume and pixel value differences between DTS and CBCT images. In the Shepp-Logan phantom study, the reconstructed pixel signal-to-noise ratio (PSNR) for the 60 degrees DTS image reached 34.3 dB. In the liver patient study, the relative error of the liver volume reconstructed using 60 degrees projections was 3.4%. The reconstructed PSNR for the 60 degrees DTS image reached 23.5 dB. In the head-and-neck patient study, the new method using 60 degrees projections was able to reconstruct the 8.1 degrees rotation of the bony structure with 0.0 degrees error. The reconstructed PSNR for the 60 degrees DTS image reached 24.2 dB. In summary, the new reconstruction method can optimally estimate the volumetric information in DTS images using 60 degrees projections. Preliminary validation of the algorithm showed that it is both technically and clinically feasible for image guidance in radiation therapy.  相似文献   
48.
Glutamatergic inputs clustered over approximately 20-40 microm can elicit local N-methyl-D-aspartate (NMDA) spike/plateau potentials in terminal dendrites of cortical pyramidal neurons, inspiring the notion that a single terminal dendrite can function as a decision-making computational subunit. A typical terminal basal dendrite is approximately 100-200 microm long: could it function as multiple decision-making subunits? We test this by sequential focal stimulation of multiple sites along terminal basal dendrites of layer 5 pyramidal neurons in rat somatosensory cortical brain slices, using iontophoresis or uncaging of brief glutamate pulses. There was an approximately sevenfold spatial gradient in average spike/plateau amplitude measured at the soma, from approximately 3 mV for distal inputs to approximately 23 mV for proximal inputs. Spike/plateaus were NMDA receptor (NMDAR) conductance-dominated at all locations. Large Ca(2+) transients accompanied spike/plateaus over a approximately 10- to 40-microm zone around the input site; smaller Ca(2+) transients extended approximately uniformly to the dendritic tip. Spike/plateau duration grew with increasing glutamate and depolarization; high Ca(2+) zone size grew with spike/plateau duration. The minimum high Ca(2+) zone half-width (just above NMDA spike threshold) increased from distal (approximately 10 microm) to proximal locations (approximately 25 microm), as did the NMDA spike glutamate threshold. Depolarization reduced glutamate thresholds. Simulations exploring multi-site interactions based on this demonstrate that if appropriately timed and localized inputs occur in vivo, a single basal dendrite could correspond to a cascade of multiple co-operating dynamic decision-making subunits able to retain information for hundreds of milliseconds, with increasing influence on neural output from distal to proximal. Dendritic NMDA spike/plateaus are thus well-suited to support graded persistent firing.  相似文献   
49.
Ren L  Godfrey DJ  Yan H  Wu QJ  Yin FF 《Medical physics》2008,35(2):664-672
The authors developed a hybrid multiresolution rigid-body registration technique to automatically register reference digital tomosynthesis (DTS) images with on-board DTS images to guide patient positioning in radiation therapy. This hybrid registration technique uses a faster but less accurate static method to achieve an initial registration, followed by a slower but more accurate adaptive method to fine tune the registration. A multiresolution scheme is employed in the registration to further improve the registration accuracy, robustness, and efficiency. Normalized mutual information is selected as the criterion for the similarity measure and the downhill simplex method is used as the search engine. This technique was tested using image data both from an anthropomorphic chest phantom and from eight head-and-neck cancer patients. The effects of the scan angle and the region-of-interest (ROI) size on the registration accuracy and robustness were investigated. The necessity of using the adaptive registration method in the hybrid technique was validated by comparing the results of the static method and the hybrid method. With a 44 degrees scan angle and a large ROI covering the entire DTS volume, the average of the registration capture ranges in single-axis simulations was between -31 and +34 deg for rotations and between -89 and +78 mm for translations in the phantom study, and between -38 and +38 deg for rotations and between -58 and +65 mm for translations in the patient study. Decreasing the DTS scan angle from 44 degrees to 22 degrees mainly degraded the registration accuracy and robustness for the out-of-plane rotations. Decreasing the ROI size from the entire DTS volume to the volume surrounding the spinal cord reduced the capture ranges to between -23 and +18 deg for rotations and between -33 and +43 mm for translations in the phantom study, and between -18 and +25 deg for rotations and between -35 and +39 mm for translations in the patient study. Results also showed that the hybrid registration technique had much larger capture ranges than the static method alone in registering the out-of-plane rotations.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号