首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4080篇
  免费   336篇
  国内免费   29篇
耳鼻咽喉   5篇
儿科学   312篇
妇产科学   41篇
基础医学   528篇
口腔科学   147篇
临床医学   396篇
内科学   1035篇
皮肤病学   38篇
神经病学   208篇
特种医学   505篇
外科学   363篇
综合类   37篇
一般理论   1篇
预防医学   210篇
眼科学   21篇
药学   337篇
中国医学   5篇
肿瘤学   256篇
  2023年   15篇
  2022年   13篇
  2021年   26篇
  2020年   36篇
  2019年   48篇
  2018年   64篇
  2017年   58篇
  2016年   64篇
  2015年   73篇
  2014年   98篇
  2013年   156篇
  2012年   131篇
  2011年   139篇
  2010年   142篇
  2009年   131篇
  2008年   153篇
  2007年   133篇
  2006年   131篇
  2005年   155篇
  2004年   131篇
  2003年   114篇
  2002年   106篇
  2001年   119篇
  2000年   118篇
  1999年   92篇
  1998年   171篇
  1997年   146篇
  1996年   150篇
  1995年   123篇
  1994年   106篇
  1993年   104篇
  1992年   78篇
  1991年   76篇
  1990年   76篇
  1989年   107篇
  1988年   88篇
  1987年   84篇
  1986年   90篇
  1985年   88篇
  1984年   52篇
  1983年   59篇
  1982年   54篇
  1981年   52篇
  1980年   51篇
  1979年   34篇
  1978年   32篇
  1977年   28篇
  1976年   33篇
  1975年   36篇
  1973年   14篇
排序方式: 共有4445条查询结果,搜索用时 15 毫秒
91.
92.
93.
In response to ionizing radiation, several signaling cascades in the cell are activated to repair the DNA breaks, prevent apoptosis, and keep the cells proliferating. AKT is important for survival and proliferation and may also be an activating factor for DNA-PKcs and MRE11, which are essential proteins in the DNA repair process. AKT (PKB) is hyperactivated in several cancers and is associated with resistance to radiotherapy and chemotherapy. There are three AKT isoforms (AKT1, AKT2, and AKT3) with different expression patterns and functions in several cancer tumors. The role of AKT isoforms has been investigated in relation to radiation response and their effects on DNA repair proteins (DNA-PKcs and MRE11) in colon cancer cell lines. The knockout of AKT1 and/or AKT2 affected the radiation sensitivity, and a deficiency of both isoforms impaired the rejoining of radiation-induced DNA double strand breaks. Importantly, the active/phosphorylated forms of AKT and DNA-PKcs associate and exposure to ionizing radiation causes an increase in this interaction. Moreover, an increased expression of both DNA-PKcs and MRE11 was observed when AKT expression was ablated, yet only DNA-PKcs expression influenced AKT phosphorylation. Taken together, these results demonstrate a role for both AKT1 and AKT2 in radiotherapy response in colon cancer cells involving DNA repair capacity through the nonhomologous end joining pathway, thus suggesting that AKT in combination with DNA-PKcs inhibition may be used for radiotherapy sensitizing strategies in colon cancer.  相似文献   
94.
95.
96.
International Journal of Clinical Pharmacy - Background In Sweden there has been limited work investigating the integration and nature of collaborative relationships between pharmacists and other...  相似文献   
97.
The East Siberian Arctic Shelf holds large amounts of inundated carbon and methane (CH4). Holocene warming by overlying seawater, recently fortified by anthropogenic warming, has caused thawing of the underlying subsea permafrost. Despite extensive observations of elevated seawater CH4 in the past decades, relative contributions from different subsea compartments such as early diagenesis, subsea permafrost, methane hydrates, and underlying thermogenic/ free gas to these methane releases remain elusive. Dissolved methane concentrations observed in the Laptev Sea ranged from 3 to 1,500 nM (median 151 nM; oversaturation by ∼3,800%). Methane stable isotopic composition showed strong vertical and horizontal gradients with source signatures for two seepage areas of δ13C-CH4 = (−42.6 ± 0.5)/(−55.0 ± 0.5) ‰ and δD-CH4 = (−136.8 ± 8.0)/(−158.1 ± 5.5) ‰, suggesting a thermogenic/natural gas source. Increasingly enriched δ13C-CH4 and δD-CH4 at distance from the seeps indicated methane oxidation. The Δ14C-CH4 signal was strongly depleted (i.e., old) near the seeps (−993 ± 19/−1050 ± 89‰). Hence, all three isotope systems are consistent with methane release from an old, deep, and likely thermogenic pool to the outer Laptev Sea. This knowledge of what subsea sources are contributing to the observed methane release is a prerequisite to predictions on how these emissions will increase over coming decades and centuries.

The East Siberian Arctic Shelf (ESAS) is the world’s largest and shallowest shelf sea system, formed through inundation of northeast Siberia during sea level transgression in the early Holocene. The ESAS holds substantial but poorly constrained amounts of organic carbon and methane (CH4). These carbon/methane stores are contained in unknown partitions as gas hydrates, unfrozen sediment, subsea permafrost, gas pockets within and below the subsea permafrost, and as underlying thermogenic gas (13). Methane release to the atmosphere from these compartments could potentially have significant effects on the global climate (4, 5), yet there are large uncertainties regarding the size and the vulnerability toward remobilization of these inaccessible and elusive subsea carbon/methane pools. Conceptual development and modeling have predicted that warming of the ESAS system by a combination of geothermal heat and climate-driven Holocene heat flux from overlying seawater, recently further enhanced by Anthropocene warming, may lead to thawing of subsea permafrost (6, 7). Subsea permafrost drilling in the Laptev Sea, in part at the same sites as 30 y ago, has recently confirmed that the subsea permafrost has indeed come near the point of thawing (8). In addition to mobilization of the carbon/methane stored within the subsea permafrost, its degradation can also lead to the formation of pathways for gaseous methane from underlying reservoirs, allowing further methane release to the overlying water column (3, 9).Near-annual ship-based expeditions to the ESAS over the past two decades have documented widespread seep locations with extensive methane releases to the water column (3, 10). Methane levels are often found to be 10 to 100 times higher than the atmospheric equilibrium and are particularly elevated in areas of strong ebullition from subsea gas seeps (“methane hotspots”). Similarly, elevated dissolved methane concentrations in bottom waters appear to be spatially related to the thermal state of subsea permafrost as deduced from modeling results and/or geophysical surveys (7, 9). Currently, we lack critical knowledge on the quantitative or even relative contributions of the different subsea pools to the observed methane release, a prerequisite for robust predictions on how these releases will develop. An important distinction needs to be made between pools that release methane gradually, such as methane produced microbially in shallow sediments during early diagenesis or in thawing subsea permafrost, versus pools with preformed methane that may release more abruptly once pathways are available, such as from disintegrating methane hydrates and pools of thermogenic (natural) gas below the subsea permafrost. Multidimensional isotope analysis offers a useful means to disentangle the relative importance of these different subsea sources of methane to the ESAS: Stable isotope data (δ13C-CH4 and δD-CH4) provide useful information on methane formation and removal pathways, and the radiocarbon content of methane (Δ14C-CH4) helps to determine the age and methane source reservoir (see SI Appendix, text S1 for details on these isotope systematics and typical isotopic signatures for the ESAS subsea system).Here, we present triple-isotope–based source apportionment of methane conducted as part of the Swedish–Russian–US investigation of carbon–climate–cryosphere interactions in the East Siberian Arctic Ocean (SWERUS-C3) program. To this end, the distribution of dissolved methane, its stable carbon and hydrogen isotope composition, as well as natural radiocarbon abundance signature, were investigated with a focus on the isotopic fingerprint of methane escaping the seabed to pinpoint the subsea sources of elevated methane in the outer Laptev Sea.  相似文献   
98.
The elbow joint is a complex joint, which, when impaired in function, leads to severe disability. In some cases however, an arthroplasty might be an appropriate treatment. In the past four decades, large steps havebeen taken to optimize this treatment in order to achieve better post-operative outcomes. To understand these progresses and to discover aspects for upcoming improvements, we present a review on the past developments, the present state of affairs and future developments which may improve patient care further.  相似文献   
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号