首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2020篇
  免费   135篇
  国内免费   45篇
耳鼻咽喉   16篇
儿科学   95篇
妇产科学   26篇
基础医学   140篇
口腔科学   42篇
临床医学   284篇
内科学   325篇
皮肤病学   44篇
神经病学   58篇
特种医学   288篇
外科学   292篇
综合类   205篇
预防医学   134篇
眼科学   16篇
药学   115篇
  2篇
中国医学   32篇
肿瘤学   86篇
  2022年   30篇
  2021年   32篇
  2020年   27篇
  2018年   19篇
  2017年   21篇
  2016年   18篇
  2015年   33篇
  2014年   48篇
  2013年   74篇
  2012年   77篇
  2011年   83篇
  2010年   90篇
  2009年   104篇
  2008年   67篇
  2007年   78篇
  2006年   80篇
  2005年   52篇
  2004年   48篇
  2003年   49篇
  2002年   46篇
  2001年   36篇
  2000年   27篇
  1999年   28篇
  1998年   82篇
  1997年   74篇
  1996年   72篇
  1995年   67篇
  1994年   41篇
  1993年   50篇
  1991年   19篇
  1990年   14篇
  1989年   30篇
  1988年   42篇
  1987年   39篇
  1986年   29篇
  1985年   33篇
  1984年   19篇
  1983年   24篇
  1982年   16篇
  1980年   16篇
  1977年   15篇
  1976年   14篇
  1963年   17篇
  1960年   14篇
  1959年   22篇
  1958年   29篇
  1957年   19篇
  1956年   30篇
  1955年   42篇
  1954年   36篇
排序方式: 共有2200条查询结果,搜索用时 250 毫秒
11.
12.
13.
14.
采用HPLC测定健康志愿者血浆中头孢克洛的浓度。方法简便快速,结果准确。平均回收率为102.18±4.01%,日间及日内RSD均小于6%。血药浓度-时间曲线符合一室模型。  相似文献   
15.
16.
豨莶脂溶性成分的研究   总被引:7,自引:0,他引:7  
从豨莶(Siegesbeckia orientalis L.)的地上部分,分离出八个化合物,其中I和I根据理化性质和光谱数据确定其结构为ent-17-acetoxy-18-isobutyryloxy-16(α)-kauran-19-oicacid(I)和ent-17-ethoxy-16(α)-kauran-19-oicacid(II),均为新化合物,分别被命为豨莶酯酸(siegesesteric acid,I)和豨莶醚酸(siegesetheric acid,I)。其余化合物分别鉴定为腺梗豨莶萜醇酸(ent-16β,17-dihydroxy-kauran-19-oicacid,II),奇任醇(kirenol,IV,β-谷甾醇葡萄糖甙(β-sitosterolglucoside,V),二十一醇(heneicosanol,VI),花生酸甲酯(methyl arachidate,VII)和β-谷甾醇(β-sitosterol,VII)。除奇任醇和β-谷甾醇外,均为首次从该植物中分得。  相似文献   
17.
18.
Depth of epidural space in children   总被引:1,自引:0,他引:1  
M. A. Hasan  MB  ChB  DA  FRCA    R. F. Howard  BSc  MB  ChB  FRCA    A. R. Lloyd-Thomas  MB  BS  FRCA   《Anaesthesia》1994,49(12):1085-1087
  相似文献   
19.
20.
Human balance and posture control during standing and walking   总被引:11,自引:0,他引:11  
The common denominator in the assessment of human balance and posture is the inverted pendulum model. If we focus on appropriate versions of the model we can use it to identify the gravitational and acceleration perturbations and pinpoint the motor mechanisms that can defend against any perturbation.

We saw that in quiet standing an ankle strategy applies only in the A/P direction and that a separate hip load/unload strategy by the hip abd/adductors is the totally dominant defence in the M/L direction when standing with feet side by side. In other standing positions (tandem, or intermediate) the two mechanisms still work separately, but their roles reverse. In the tandem position M/L balance is an ankle mechanism (invertors/evertors) while in the A/P direction a hip load/unloading mechanism dominates.

During initiation and termination of gait these two separate mechanisms control the trajectory of the COP to ensure the desired acceleration and deceleration of the COM. During initiation the initial acceleration of the COM forward towards the stance limb is achieved by a posterior and lateral movement of the COP towards the swing limb. After this release phase there is a sudden loading of the stance limb which shifts the COP to the stance limb. The COM is now accelerated forward and laterally towards the future position of the swinging foot. Also M/L shifts of the COP were controlled by the hip abductors/adductors and all A/P shifts were under the control of the ankle plantar/dorsiflexors. During termination the trajectory of both COM and COP reverse. As the final weight-bearing on the stance foot takes place the COM is passing forward along the medial border of that foot. Hyperactivity of that foot's plantarflexors takes the COP forward and when the final foot begins to bear weight the COP moves rapidly across and suddenly stops at a position ahead of the future position of the COM. Then the plantarflexors of both feet release and allow the COP to move posteriorly and approach the COM and meet it as quiet stance is achieved. The inverted pendulum model permitted us to understand the separate roles of the two mechanisms during these critical unbalancing and rebalancing periods.

During walking the inverted pendulum model explained the dynamics of the balance of HAT in both the A/P and M/L directions. Here the model includes the couple due to the acceleration of the weight-bearing hip as well as gravitational perturbations. The exclusive control of A/P balance and posture are the hip extensors and flexors, while in the M/L direction the dominant control is with the hip abductors with very minor adductor involvement. At the ankle the inverted pendulum model sees the COM passing forward along the medial border to the weight-bearing foot. The model predicts that during single support the body is falling forward and being accelerated medially towards the future position of the swing foot. The model predicts an insignificant role of the ankle invertors/evertors in the M/L control. Rather, the future position of the swing foot is the critical variable or more specifically the lateral displacement from the COM at the start of single support. The position is actually under the control of the hip abd/adductors during the previous early swing phase.

The critical importance of the hip abductors/adductors in balance during all phases of standing and walking is now evident. This separate mechanism is important from a neural control perspective and clinically it focuses major attention on therapy and potential problems with some surgical procedures. On the other hand the minuscule role of the ankle invertors/evertors is important to note. Except for the tandem standing position these muscles have negligible involvement in balance control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号