首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1313032篇
  免费   96069篇
  国内免费   25760篇
耳鼻咽喉   16721篇
儿科学   34610篇
妇产科学   34570篇
基础医学   179998篇
口腔科学   33062篇
临床医学   127008篇
内科学   248639篇
皮肤病学   23837篇
神经病学   95858篇
特种医学   51382篇
外国民族医学   552篇
外科学   187618篇
综合类   72091篇
现状与发展   76篇
一般理论   299篇
预防医学   91110篇
眼科学   31865篇
药学   104220篇
  334篇
中国医学   19699篇
肿瘤学   81312篇
  2022年   15594篇
  2021年   22806篇
  2020年   16067篇
  2019年   17826篇
  2018年   21407篇
  2017年   17788篇
  2016年   17658篇
  2015年   23910篇
  2014年   31251篇
  2013年   36035篇
  2012年   50717篇
  2011年   55497篇
  2010年   33954篇
  2009年   29384篇
  2008年   45371篇
  2007年   47245篇
  2006年   47452篇
  2005年   46456篇
  2004年   39146篇
  2003年   37255篇
  2002年   35503篇
  2001年   53418篇
  2000年   55779篇
  1999年   49304篇
  1998年   16723篇
  1997年   15642篇
  1996年   14111篇
  1995年   13036篇
  1994年   11910篇
  1993年   10253篇
  1992年   33838篇
  1991年   32315篇
  1990年   31326篇
  1989年   29977篇
  1988年   27834篇
  1987年   27023篇
  1986年   25806篇
  1985年   24429篇
  1984年   17951篇
  1983年   15281篇
  1982年   9118篇
  1979年   16453篇
  1978年   11320篇
  1977年   9578篇
  1975年   10110篇
  1974年   12014篇
  1973年   11547篇
  1972年   10975篇
  1971年   10069篇
  1970年   9662篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
Calculus bovis is commonly used for the treatment of stroke in traditional Chinese medicine. Hyodeoxycholic acid(HDCA) is a bioactive compound extracted from calculus bovis. When combined with cholic acid, baicalin and jas-minoidin, HDCA prevents hypoxia-reoxygenation-induced brain injury by suppressing endoplasmic reticulum stress-mediated apoptotic signaling. However, the effects of HDCA in ischemic stroke injury have not yet been studied. Neurovascular unit(NVU) dysfunction occurs in ischemic stroke. Therefore, in this study, we investigated the effects of HDCA on the NVU under ischemic conditions in vitro. We co-cultured primary brain microvascular endothelial cells, neurons and astrocytes using a transwell chamber co-culture system. The NVU was pre-treated with 10.16 or 2.54 μg/mL HDCA for 24 hours before exposure to oxygen-glucose deprivation for 1 hour. The cell counting kit-8 assay was used to detect cell activity. Flow cytometry and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling were used to assess apoptosis. Enzyme-linked immunosorbent assay was used to measure the expression levels of inflammatory cytokines, including interleukin-1β, interleukin-6 and tumor necrosis factor-α, and neurotrophic factors, including brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. Oxidative stress-related factors, such as superoxide dismutase, nitric oxide, malondialdehyde and γ-glutamyltransferase, were measured using kits. Pretreatment with HDCA significantly decreased blood-brain barrier permeability and neuronal apoptosis, significantly increased transendothelial electrical resistance and γ-glutamyltransferase activity, attenuated oxidative stress damage and the release of inflammatory cytokines, and increased brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor expression. Our findings suggest that HDCA maintains NVU morphological integrity and function by modulating inflammation, oxidation stress, apoptosis, and the expression of neurotrophic factors. Therefore, HDCA may have therapeutic potential in the clinical management of ischemic stroke. This study was approved by the Ethics Committee of Experimental Animals of Beijing University of Chinese Medicine(approval No. BUCM-3-2016040201-2003) in April 2016.  相似文献   
92.
93.
This study aimed at deriving occupational thresholds of toxicological concern for inhalation exposure to systemically-acting organic chemicals using predicted internal doses. The latter were also used to evaluate the quantitative relationship between occupational exposure limit and internal dose. Three internal dose measures were identified for investigation: (i) the daily area under the venous blood concentration vs. time curve, (ii) the daily rate of the amount of parent chemical metabolized, and (iii) the maximum venous blood concentration at the end of an 8-hr work shift. A dataset of 276 organic chemicals with 8-hr threshold limit values-time-weighted average was compiled along with their molecular structure and Cramer classes (Class I: low toxicity, Class II: intermediate toxicity, Class III: suggestive of significant toxicity). Using a human physiologically-based pharmacokinetic model, the three identified dose metrics were predicted for an 8-hr occupational inhalation exposure to the threshold limit value for each chemical. Distributional analyses of the predicted dose metrics were performed to identify the percentile values corresponding to the occupational thresholds of toxicological concern. Also, simple linear regression analyses were performed to evaluate the relationship between the 8-hr threshold limit value and each of the predicted dose metrics, respectively. No threshold of toxicological concern could be derived for class II due to few chemicals. Based on the daily rate of the amount of parent chemical metabolized, the proposed internal dose-based occupational thresholds of toxicological concern were 5.61?×?10?2 and 9?×?10?4 mmol/d at the 10th percentile level for classes I and III, respectively, while they were 4.55?×?10?1 and 8.5?×?10?3 mmol/d at the 25th percentile level. Even though high and significant correlations were observed between the 8-hr threshold limit values and the predicted dose metrics, the one with the rate of the amount of chemical metabolized was remarkable regardless of the Cramer class (r2 = 0.81; n = 276). The proposed internal dose-based occupational thresholds of toxicological concern are potentially useful for screening-level assessments as well as prioritization within an integrated occupational risk assessment framework.  相似文献   
94.
95.
Stellate ganglion (SG) modification has been investigated for arrhythmia treatment. In this study, transesophageal SG imaging and intervention were explored using a homemade 30F integrated focused ultrasonic catheter in healthy mongrel canines in vivo. Anatomic details of SGs were ultrasonically imaged and evaluated. SG had a heterogeneous echoic structure and characteristic profiles sketched by hyper-echoic outlines in an ultrasonogram. Left SGs in the experimental group were successfully ablated through the esophagus under ultrasonic guidance provided by the catheter itself. Two weeks after the ablation, the QT and QTc of the experimental group decreased compared with those of the sham group and at baseline (both p values < 0.001). Histologic examination revealed that left SGs were destroyed. No major complications were observed. This approach may be further explored as a method for ganglia remodeling evaluation and as a strategy of ganglia modification for arrhythmia and for other diseases.  相似文献   
96.
97.
98.
99.
Malaria, one of the most striking, re-emerging infectious diseases caused by the genus Plasmodium, places a huge burden on global healthcare systems. A major challenge in the control and eradication of malaria is the continuous emergence of increasingly widespread drug-resistant malaria, creating an urgent need to develop novel antimalarial agents. Chalcone derivatives are ubiquitous in nature and have become indispensable units in medicinal chemistry applications due to their diverse biological profiles. Many chalcone derivatives demonstrate potential in vitro and in vivo antimalarial activity, so chalcone could be a useful template for the development of novel antimalarial agents. This review covers the recent development of chalcone hybrids as antimalarial agents. The critical aspects of the design and structure–activity relationship of these compounds are also discussed.  相似文献   
100.
BACKGROUND. The identification and treatment of individuals with tuberculosis (TB) is a global public health priority. Accurate diagnosis of pulmonary active TB (ATB) disease remains challenging and relies on extensive medical evaluation and detection of Mycobacterium tuberculosis (Mtb) in the patient’s sputum. Further, the response to treatment is monitored by sputum culture conversion, which takes several weeks for results. Here, we sought to identify blood-based host biomarkers associated with ATB and hypothesized that immune activation markers on Mtb-specific CD4+ T cells would be associated with Mtb load in vivo and could thus provide a gauge of Mtb infection.METHODS. Using polychromatic flow cytometry, we evaluated the expression of immune activation markers on Mtb-specific CD4+ T cells from individuals with asymptomatic latent Mtb infection (LTBI) and ATB as well as from ATB patients undergoing anti-TB treatment.RESULTS. Frequencies of Mtb-specific IFN-γ+CD4+ T cells that expressed immune activation markers CD38 and HLA-DR as well as intracellular proliferation marker Ki-67 were substantially higher in subjects with ATB compared with those with LTBI. These markers accurately classified ATB and LTBI status, with cutoff values of 18%, 60%, and 5% for CD38+IFN-γ+, HLA-DR+IFN-γ+, and Ki-67+IFN-γ+, respectively, with 100% specificity and greater than 96% sensitivity. These markers also distinguished individuals with untreated ATB from those who had successfully completed anti-TB treatment and correlated with decreasing mycobacterial loads during treatment.CONCLUSION. We have identified host blood-based biomarkers on Mtb-specific CD4+ T cells that discriminate between ATB and LTBI and provide a set of tools for monitoring treatment response and cure.TRIAL REGISTRATION. Registration is not required for observational studies.FUNDING. This study was funded by Emory University, the NIH, and the Yerkes National Primate Center.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号