首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1085篇
  免费   76篇
  国内免费   7篇
耳鼻咽喉   4篇
儿科学   21篇
妇产科学   24篇
基础医学   194篇
口腔科学   14篇
临床医学   92篇
内科学   215篇
皮肤病学   22篇
神经病学   117篇
特种医学   17篇
外科学   82篇
综合类   3篇
一般理论   2篇
预防医学   86篇
眼科学   13篇
药学   106篇
中国医学   1篇
肿瘤学   155篇
  2024年   2篇
  2023年   12篇
  2022年   32篇
  2021年   62篇
  2020年   21篇
  2019年   48篇
  2018年   33篇
  2017年   21篇
  2016年   33篇
  2015年   48篇
  2014年   71篇
  2013年   65篇
  2012年   126篇
  2011年   105篇
  2010年   52篇
  2009年   34篇
  2008年   78篇
  2007年   60篇
  2006年   46篇
  2005年   65篇
  2004年   45篇
  2003年   40篇
  2002年   38篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1998年   8篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1988年   1篇
  1984年   1篇
  1981年   1篇
  1974年   1篇
  1973年   1篇
  1970年   1篇
排序方式: 共有1168条查询结果,搜索用时 46 毫秒
111.
OBJECTIVE— To ascertain the importance and mechanisms underlying the role of brain glucagon-like peptide (GLP)-1 in the control of metabolic and cardiovascular function. GLP-1 is a gut hormone secreted in response to oral glucose absorption that regulates glucose metabolism and cardiovascular function. GLP-1 is also produced in the brain, where its contribution to central regulation of metabolic and cardiovascular homeostasis remains incompletely understood.RESEARCH DESIGN AND METHODS— Awake free-moving mice were infused with the GLP-1 receptor agonist exendin-4 (Ex4) into the lateral ventricle of the brain in the basal state or during hyperinsulinemic eu-/hyperglycemic clamps. Arterial femoral blood flow, whole-body insulin-stimulated glucose utilization, and heart rates were continuously recorded.RESULTS— A continuous 3-h brain infusion of Ex4 decreased femoral arterial blood flow and whole-body glucose utilization in the awake free-moving mouse clamped in a hyperinsulinemic-hyperglycemic condition, only demonstrating that this effect was strictly glucose dependent. However, the heart rate remained unchanged. The metabolic and vascular effects of Ex4 were markedly attenuated by central infusion of the GLP-1 receptor (GLP-1R) antagonist exendin-9 (Ex9) and totally abolished in GLP-1 receptor knockout mice. A correlation was observed between the metabolic rate and the vascular flow in control and Ex4-infused mice, which disappeared in Ex9 and GLP-1R knockout mice. Moreover, hypothalamic nitric oxide synthase activity and the concentration of reactive oxygen species (ROS) were also reduced in a GLP-1R–dependent manner, whereas the glutathione antioxidant capacity was increased. Central GLP-1 activated vagus nerve activity, and complementation with ROS donor dose-dependently reversed the effect of brain GLP-1 signaling on peripheral blood flow.CONCLUSIONS— Our data demonstrate that central GLP-1 signaling is an essential component of circuits integrating cardiovascular and metabolic responses to hyperglycemia.There is now compelling evidence supporting the interplay between metabolic and vascular diseases (1,2) in which neuronal circuits in the central nervous system seem to play a critical role in orchestrating the control of glucose homeostasis (3). We recently demonstrated that the central infusion of insulin decreased blood pressure and increased arterial blood flow and heart rate through a molecular mechanism depending on the synthesis of nitric oxide in the hypothalamus (4). Importantly, the central regulation of nitric oxide (NO) metabolism affected whole-body glucose utilization (5). This mechanism was impaired during high-fat diet–induced insulin resistance and diabetes and reverted upon central NO supplementation (4). These findings raise the possibility that signals from peripheral tissues, which act on the brain to control glucose metabolism, could also regulate vascular function.Enteroendocrine cells have important roles in regulating energy intake and glucose homeostasis through their actions on peripheral target organs, including the endocrine pancreas. Enteroendocrine cells secrete multiple hormones, including glucagon-like peptide (GLP)-1, which controls pancreatic endocrine secretion (6). GLP-1 is also a neuropeptide synthesized by neurons in the caudal regions of the nucleus of the solitary tract (NTS) (7,8). GLP-1 is released into the hypothalamus and controls food intake, blood pressure, and heart rate (9,10). Whereas most of the glucose-lowering actions of GLP-1 have been attributed to the direct effect of the hormone on the endocrine pancreas, i.e., to stimulation of insulin and inhibition of glucagon secretion, we demonstrated the importance of extra-pancreatic GLP-1 receptor–dependent control of insulin secretion (11) and whole-body glucose distribution (12). The infusion into the brain of the GLP-1 receptor antagonist exendin-9 (Ex9) inhibited insulin secretion induced by gut glucose (11). Conversely, central administration of the GLP-1 receptor agonist exendin-4 (Ex4) augmented intravenous glucose-stimulated insulin secretion to a level similar to that obtained during an intragastric glucose infusion (11). Our data suggested that the absorptive state was associated with the stimulation of the gut-to-brain axis leading to the activation of brain GLP-1 signaling and, consequently, to hyperinsulinemia. During the absorptive state, blood flow redistribution toward mesenteric organs is also observed, which has been proposed to favor nutrient redistribution into the liver (13). Importantly, stimulation of the central GLP-1 receptor increases blood pressure and heart rate and activates autonomic regulatory neurons (8,14,15). However, recently it has been shown that GLP-1 reduced islet blood flow after glucose administration (16). Therefore, the role of brain GLP-1 signaling also in the control of cardiovascular homeostasis remains incompletely understood.We have now pursued the importance of GLP-1 action in the central nervous system for control of cardiovascular function using studies in conscious free-moving mice. After central GLP-1 infusion, we simultaneously recorded femoral arterial blood flow, heart rate, and insulin and glucose sensitivity during hyperinsulinemic-euglycemic or hyperglycemic clamps. We now demonstrate that hypothalamic reactive oxygen and nitrogen species are controlled by brain GLP-1 and are essential for the coordinated regulation of metabolic and cardiovascular function.  相似文献   
112.
A novel series of antagonists of the human P2X7 receptor is described. Modification of substituents enabled identification of compounds selective for the rat P2X7 receptor and provides useful pharmacological tools for evaluation of the role of P2X7 in disease.  相似文献   
113.
This study empirically characterized the experiences of 227 adult next-of-kin as they mourned suicides that had occurred in New York City during 1997. Next-of-kin reported psychosocial problems including family difficulties, comorbid stressors, psychiatric symptomatology, and unresolved bereavement. Professional intervention was the most frequently reported need and the most frequently reported type of desired help. In terms of actual receipt of assistance, participants reported having received help from families, friends, and communities as well as from professionals. Although some next-of-kin had not sought help because they felt able to cope without assistance, others encountered barriers to receiving desired help. These findings warrant increased and sustained community outreach to this population. Recommendations include public education regarding de-stigmatization of suicide and the needs of the suicidally bereaved, enhancement of internal and external coping supports, facilitation of access to both professional and community help, and better coordinated and more culturally appropriate services.  相似文献   
114.
115.
116.
Although the presence of an exogenous anion is a requirement for tight Fe(3+) binding by the bacterial (Neisseria) transferrin nFbp, the identity of the exogenous anion is not specific in vitro. nFbp was reconstituted as a stable iron containing protein by using a number of different exogenous anions [arsenate, citrate, nitrilotriacetate, pyrophosphate, and oxalate (symbolized by X)] in addition to phosphate, predominantly present in the recombinant form of the protein. Spectroscopic characterization of the Fe(3+)anion interaction in the reconstituted protein was accomplished by UV-visible and EPR spectroscopies. The affinity of the protein for Fe(3+) is anion dependent, as evidenced by the effective Fe(3+) binding constants (K'(eff)) observed, which range from 1 x 10(17) M(-1) to 4 x 10(18) M(-1) at pH 6.5 and 20 degrees C. The redox potentials for Fe(3+)nFbpXFe(2+)nFbpX reduction are also found to depend on the identity of the synergistic anion required for Fe(3+) sequestration. Facile exchange of exogenous anions (Fe(3+)nFbpX + X' --> Fe(3+)nFbpX' + X) is established and provides a pathway for environmental modulation of the iron chelation and redox characteristics of nFbp. The affinity of the iron loaded protein for exogenous anion binding at pH 6.5 was found to decrease in the order phosphate > arsenate approximately pyrophosphate > nitrilotriacetate > citrate approximately oxalate carbonate. Anion influence on the iron primary coordination sphere through iron binding and redox potential modulation may have in vivo application as a mechanism for periplasmic control of iron delivery to the cytosol.  相似文献   
117.
Phenotypic novelties can arise if integrated developmental pathways are expressed at new developmental stages and then recruited to serve new functions. We analyze the origin of a novel developmental trait of Dictyostelid amoebae: the evolution of cAMP as a developmental chemoattractant. We show that cAMP's role of attracting starving amoebae arose through recruitment of a pathway that originally evolved to coordinate fruiting body morphogenesis. Orthologues of the high-affinity cAMP receptor (cAR), cAR1, were identified in a selection of species that span the Dictyostelid phylogeny. The cAR1 orthologue from the basal species Dictyostelium minutum restored aggregation and development when expressed in an aggregation-defective mutant of the derived species Dictyostelium discoideum that lacks high-affinity cARs, thus demonstrating that the D. minutum cAR is a fully functional cAR. cAR1 orthologues from basal species are expressed during fruiting body formation, and only this process, and not aggregation, was disrupted by abrogation of cAR1 function. This is in contrast to derived species, where cAR1 is also expressed during aggregation and critically regulates this process. Our data show that coordination of fruiting body formation is the ancestral function of extracellular cAMP signaling, whereas its derived role in aggregation evolved by recruitment of a preexisting pathway to an earlier stage of development. This most likely occurred by addition of distal cis-regulatory regions to existing cAMP signaling genes.  相似文献   
118.
119.
We have previously shown that serotonin (5-HT) stimulates aldosterone secretion from the human adrenal gland through activation of 5-HT(4) receptors. The aim of the present study was to investigate in vivo and in vitro the presence of 5-HT(4) receptors in aldosterone-producing adenomas (aldosteronomas). Eight patients with aldosteronoma received a single oral dose of placebo or cisapride (10 mg). Cisapride administration significantly increased plasma aldosterone within 120 min without any significant change in renin, cortisol, or potassium levels. In two patients, a marked decrease in the plasma aldosterone response to cisapride was observed after surgical removal of the tumor. The effects of 5-HT and selective 5-HT(4) ligands on aldosterone production from aldosteronoma tissues were studied in vitro using a perifusion system technique. 5-HT and the 5-HT(4) receptor agonist cisapride (10(-7) M, 20 min) both stimulated aldosterone secretion from aldosteronoma slices. The 5-HT- and cisapride-evoked aldosterone responses were inhibited by concomitant administration of the specific 5-HT(4) receptor antagonist GR 113808 (10(-7) M, 150 min). PCR amplification revealed the expression of 5-HT(4) receptor mRNA in 13 of 14 aldosteronomas studied. Taken together, these data show that most aldosteronomas, like normal glomerulosa cells, express a functional 5-HT(4) receptor. Our results also suggest that 5-HT, which can be locally released by intratumoral mast cells, may play a role in the pathophysiology of these tumors.  相似文献   
120.
Role of cyclic nucleotide signaling in oocyte maturation   总被引:13,自引:0,他引:13  
The development of the ovarian follicle, oocyte maturation, and ovulation require a complex set of endocrine, paracrine, and autocrine inputs that are translated into the regulation of cyclic nucleotide levels. Changes in intracellular cAMP mediate the gonadotropin regulation of granulosa and theca cell functions. Likewise, a decrease in cAMP concentration in the oocyte has been associated with the resumption of meiosis. Using pharmacological and molecular approaches, we determined that the expression of cyclic nucleotide phosphodiesterases (PDEs), the enzymes that degrade and inactivate cAMP, is compartmentalized in the ovarian follicle of all species studied, with PDE3 present in the oocytes and PDE4s in granulosa cells. The PDE3 expressed in the mouse oocyte was cloned, and the protein expressed in a heterologous system had properties similar to those of a PDE3A derived from somatic cells. Inhibition of the oocyte PDE3 completely blocked oocyte maturation in vitro and in vivo, demonstrating that the activity of this enzyme is essential for oocyte maturation. Heterologous expression of PDE3A in Xenopus oocyte causes morphological changes distinctive of resumption of meiosis (GVBD), as well as activation of mos translation and MAPK phosphorylation. Using mRNA and antibody microinjection in the Xenopus eggs, we have shown that PDE3 is downstream from the kinase PKB/Akt in the pathway that mediates IGF-1 but not progesterone-induced meiotic resumption. The presence of a similar regulatory module in mammalian oocytes is inferred by pharmacological studies with PDE3 inhibitors and measurement of PDE activity. Thus, PDE3 plays an essential role in the signaling pathway that controls resumption of meiosis in amphibians and mammals. Understanding the regulation of this enzyme may shed some light on the signals that trigger oocyte maturation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号