首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   284篇
  免费   11篇
  国内免费   9篇
儿科学   10篇
妇产科学   3篇
基础医学   49篇
口腔科学   3篇
临床医学   28篇
内科学   37篇
皮肤病学   1篇
神经病学   26篇
特种医学   39篇
外科学   50篇
综合类   10篇
预防医学   4篇
眼科学   23篇
药学   13篇
肿瘤学   8篇
  2024年   1篇
  2023年   4篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   4篇
  2015年   7篇
  2014年   6篇
  2013年   8篇
  2012年   4篇
  2011年   10篇
  2010年   8篇
  2009年   12篇
  2008年   15篇
  2007年   19篇
  2006年   21篇
  2005年   4篇
  2004年   11篇
  2003年   18篇
  2002年   13篇
  2001年   6篇
  2000年   17篇
  1999年   11篇
  1998年   16篇
  1997年   4篇
  1996年   6篇
  1995年   7篇
  1994年   10篇
  1993年   7篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   10篇
  1987年   4篇
  1986年   4篇
  1985年   3篇
  1984年   3篇
  1983年   3篇
  1982年   3篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1977年   3篇
  1976年   1篇
  1975年   1篇
排序方式: 共有304条查询结果,搜索用时 15 毫秒
31.
BACKGROUND: Patients with PD can have disabling visual hallucinations associated with dopaminergic therapy. Sleep disorders, including vivid dreams and REM sleep with motor behaviors (RBD), are frequent in these patients. METHODS: The association of hallucinations and REM sleep both at night and during the day was examined in 10 consecutive nondemented patients with long-standing levodopa-responsive PD and hallucinations. Seven patients presented with paranoia and paranoid delusions. Overnight sleep recordings and standard multiple daytime sleep latency test were performed. The results were compared to those of 10 similar patients with PD not experiencing hallucinations. RESULTS: RBD was detected in all 10 patients with hallucinations and in six without. Although nighttime sleep conditions were similar in both groups, hallucinators tended to be sleepier during the day. Delusions following nighttime REM period and daytime REM onsets were observed in three and eight of the hallucinators, and zero and two of the others. Daytime hallucinations, coincident with REM sleep intrusions during periods of wakefulness, were reported only by hallucinators. Postmortem examination of the brain of one patient showed numerous Lewy bodies in neurons of the subcoeruleus nucleus, a region that is involved in REM sleep control. CONCLUSION: The visual hallucinations that coincide with daytime episodes of REM sleep in patients who also experience post-REM delusions at night may be dream imagery. Psychosis in patients with PD may therefore reflect a narcolepsy-like REM sleep disorder.  相似文献   
32.
To assess the effect of surfactant replacement therapy (SRT) on the prevalence and severity of retinopathy of prematurity (ROP), we compared data from 160 SRT-treated preterm infants with data from 230 historic controls. The prevalence of ROP was 30.6% in the treatment group and 23.4% in the control group. Severe ROP (stages 3-4) was seen in 6.1% of the infants with ROP in the treatment group and 20.3% of the ROP patients in the control group. Surfactant therapy had no influence on the prevalence of ROP (odds ratio 1.4, 95% confidence interval 0.797-2.459, p = 0.242). However, SRT was associated with a decreased risk for severe ROP, compared to mild ROP (odds ratio 0.226, 95% confidence interval 0.056-0.905, p = 0.036). These data suggest that SRT is associated with a decreased risk for severe ROP.  相似文献   
33.
Oscillatory motion of the normal cervical spinal cord   总被引:2,自引:0,他引:2  
  相似文献   
34.
Background: Calcitonin gene-related peptide (CGRP) is known to have an extremely potent and prolonged vasodilator effect on the coronary arteries. Studies have shown that CGRP increased coronary blood flow and alleviated reperfusion injury in vitro. It is still unknown, however, whether exogenous CGRP has a protective effect on the reperfusion heart associated with cardiopulmonary bypass (CPB). Methods: An in vivo porcine model of CPB was established. Twenty pigs, 10 controls and 10 CGRP used animals (CGRP group), were performed a median sternotomy followed by a standard CPB. All the hearts were arrested for 45 minutes. In the CGRP group, 1mg/kg CGRP was added into the cardioplegia, and another 1mg/kg was reperfused just before the aortic cross-clamp was removed. In both groups, myocardial microvascular perfusion, coronary arterial microvessel diameter and microvessel blood flow were detected by a laser doppler flowmeter and a contact microscope with TV monitor on five consecutive time perioperatively. Result: Myocardial microvascular perfusion was significantly higher and coronary arterial microvessel diameter was larger in the CGRP group on every point of time of reperfusion compared to those in the control group. In the CGRP group, microvessel blood flow also improved significantly than that in the control group during reperfusion. Conclusion: CGRP improves myocardial microcirculation during cardiac ischemia-reperfusion associated with CPB and could become a new, potent myocardial protector.  相似文献   
35.
36.
Applying tidal volumes of less than 6 mL/kg might improve lung protection in patients with acute respiratory distress syndrome. In a recent article, Retamal and colleagues showed that such a reduction is feasible with conventional mechanical ventilation and leads to less tidal recruitment and overdistension without causing carbon dioxide retention or auto-positive end-expiratory pressure. However, whether the compensatory increase in the respiratory rate blunts the lung protection remains unestablished.Further reducing tidal volumes beyond the standard 6 mL/kg is an appealing goal in patients with acute respiratory distress syndrome (ARDS) [1]. Such reduction could decrease the tidal stretch imposed on the lung, potentially attenuating further the ventilator-induced lung injury [2]. In fact, tidal volumes of less than 6.5 mL/kg and as low as 4 mL/kg were recently associated with increased survival in patients with ARDS [3]. One of the main obstacles to such a strategy is the potential for carbon dioxide (CO2) retention and severe acidosis. To avoid this, specialized techniques, such as high-frequency oscillatory ventilation and extracorporeal CO2 removal, have been previously tested with mixed results [4-6].In the previous issue of Critical Care, Retamal and colleagues proposed that lower tidal volumes could be used with conventional positive-pressure ventilation without leading to CO2 retention [1]. A reduction in tidal volume from 6 to 4 mL/kg was feasible with a decrease in the instrumental dead space and an increase in the respiratory rate. In patients with ARDS, the dead space is a marker of disease severity [7]. Consequently, very low tidal volumes can be difficult to use in practice, especially in very sick patients, because the necessary increase in respiratory rate might cause significant auto-positive end-expiratory pressure (auto-PEEP). Luckily, patients with severe ARDS also tend to have low lung compliance [8], making their lungs inflate and deflate fast. Therefore, this restrictive ventilatory pattern allows the safe use of high respiratory rates without leading to significant auto-PEEP.Retamal and colleagues [1] should be congratulated for their careful design of the ventilator protocol in the 4 mL/kg phase, which allowed an effective CO2 elimination. The bottom line is that if one decides to use very low tidal volumes with high respiratory rates, attention to the details is invaluable. First, the removal of any dispensable dead space, including substituting an external heated humidifier by the heat-moisture exchanger, is imperative. Second, the use of volume-controlled ventilation helps to keep short inspiratory times. Peak airway pressures may increase, but the preserved expiratory time guarantees low auto-PEEP and, consequently, low plateau pressures. For safety, plateau pressures and auto-PEEP should be measured periodically. Third, in selected cases with high recruitability, the alveolar dead space can be minimized through recruitment maneuvers and higher PEEP values. Finally, the use of a short end-inspiratory pause is encouraged to improve the CO2 elimination [9]. These measures will improve the safety and optimize the CO2 elimination of a strategy with very low tidal volumes, even with higher-than-normal respiratory rates.However, even successfully avoiding CO2 retention, this strategy has yet to be proven effective in terms of further lung protection. We believe that two aspects should be taken into consideration. The first is whether the strategy attenuated the mechanisms of lung injury. The authors performed computed tomography scans in all patients at tidal volumes of both 4 and 6 mL/kg and showed that the amount of cyclic recruitment-derecruitment and hyperinflation decreased after reducing the tidal volume. Although the absolute reduction was small (less than 1% of the lung weight), this finding is suggestive of decreased injury per breath. The second aspect is that an increased respiratory rate can be injurious per se [10]. It would be important to know whether the compensatory increase of the respiratory rate blunted the protective effect per breath of the tidal volume reduction.This tradeoff was emphasized recently in a model of the energy delivered by the ventilator as a surrogate for the potential lung damage [11]. Decreases in tidal volume require disproportionate increases in respiratory rate to maintain alveolar ventilation, and so more energy can be delivered to the lungs even at reduced stress and strain per breath. Though purely theoretical, this hypothesis helps reconcile our expectation of a further protective effect of very low tidal volumes with the recent findings of harmful or null effect of oscillatory high-frequency ventilation [5,6]. In these trials, it is possible that the reduction in lung injury per breath was offset by the very high respiratory rates applied.Finally, Retamal and colleagues [1] followed their patients for 5 to 30 minutes only. Since lower tidal volumes tend to promote atelectasis, especially under insufficient PEEP [12], a longer observation time perhaps would have shown an increase in atelectasis and driving pressures, opposing the benefits initially achieved.In conclusion, we are convinced that a strategy with very low tidal volumes (4 mL/kg) is feasible with conventional positive-pressure ventilation. This strategy could be used in patients with high plateau pressures or high driving pressures with standard 6 mL/kg tidal volumes, but we need more data in terms of lung protection before we can recommend this strategy to every patient with ARDS.  相似文献   
37.
BACKGROUND: Few published data are available regarding perioperative blood usage in lung transplantation. STUDY DESIGN AND METHODS: The medical records of all patients undergoing lung transplantation at a university medical center in 1994 and 1995 were reviewed. RESULTS: Ninety patients underwent lung transplantation during this period. Six patients were excluded: two received a living related-donor lung, three underwent retransplantation and one underwent concomitant repair of a tetralogy of Fallot. Of the 84 evaluable patients, 59 underwent single lung transplantation and 25 double lung transplantation. Double-lung recipients used more red cells (6.4 vs. 1.7 units, p = 0.0002) and were more likely to receive red cells, platelets, plasma, or any component (92 vs. 32%, p< or =0.0001) than were single-lung recipients. Double- lung recipients were more likely to require cardiopulmonary bypass (40 vs. 12%, p = 0.003), and cardiopulmonary bypass was associated with greater transfusion requirements (p< or =0.0001). However, among patients requiring cardiopulmonary bypass, blood use did not differ between those undergoing double lung transplantation and those undergoing single lung transplantation. In the subset of patients not requiring cardiopulmonary bypass, double-lung recipients received more red cells (4.5 vs. 0.7 units, p< or =0.0001) and more plasma (2.0 vs. 0.2 units, p = 0.006). CONCLUSION: Double-lung recipients require more perioperative transfusions than single-lung recipients. The greater transfusion requirement is due to the more frequent need for cardiopulmonary bypass as well as the greater complexity of the procedure. These data are useful for developing surgical blood ordering guidelines for lung transplantation.  相似文献   
38.
We report on a preterm infant born at 31 weeks of gestation with a phenotype suggestive of Alagille syndrome, yet microarray analysis identified a deletion on 7q11.23 at the Williams syndrome locus. The infant died on day 18 of life with overwhelming sepsis. This case illustrates the importance of microarray analysis in diagnosing genetic conditions, especially in preterm babies whose facial and other clinical manifestations have not fully developed.  相似文献   
39.
40.
The role of basal forebrain-derived cholinergic afferents in the development of neocortex was studied in postnatal rats. Newborn rat pups received intraventricular injections of 192 IgG-saporin. Following survival periods ranging from 2 days to 6 months, the brains were processed to document the cholinergic lesion and to examine morphological consequences. Immunocytochemistry for choline acetyltransferase (ChAT) and in situ hybridization for ChAT mRNA demonstrate a loss of approximately 75% of the cholinergic neurons in the medial septum and nucleus of the diagonal band of Broca in the basal forebrain. In situ hybridization for glutamic acid decarboxylase mRNA reveals no loss of basal forebrain GABAergic neurons. Acetylcholinesterase histochemistry demonstrates a marked reduction of the cholinergic axons in neocortex. Cholinergic axons are reduced throughout the cortical layers; this reduction is more marked in medial than in lateral cortical areas. The thickness of neocortex is reduced by approximately 10%. Retrograde labeling of layer V cortico-collicular pyramidal cells reveals a reduction in cell body size and also a reduction in numbers of branches of apical dendrites. Spine densities on apical dendrites are reduced by approximately 20-25% in 192 IgG- saporin-treated cases; no change was detected in number of spines on basal dendrites. These results indicate a developmental or maintenance role for cholinergic afferents to cerebral cortical neurons.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号