首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   154篇
  免费   10篇
妇产科学   1篇
基础医学   11篇
临床医学   7篇
内科学   4篇
神经病学   105篇
特种医学   4篇
外科学   23篇
预防医学   2篇
药学   6篇
肿瘤学   1篇
  2024年   1篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   3篇
  2017年   4篇
  2016年   1篇
  2015年   3篇
  2014年   4篇
  2013年   3篇
  2012年   7篇
  2011年   10篇
  2010年   3篇
  2009年   9篇
  2008年   5篇
  2007年   11篇
  2006年   10篇
  2005年   8篇
  2004年   14篇
  2003年   10篇
  2002年   9篇
  2001年   5篇
  2000年   2篇
  1999年   2篇
  1998年   4篇
  1997年   5篇
  1996年   6篇
  1995年   6篇
  1994年   1篇
  1993年   2篇
  1992年   4篇
  1991年   4篇
  1989年   1篇
  1985年   1篇
  1965年   1篇
排序方式: 共有164条查询结果,搜索用时 15 毫秒
91.
A recent study, carried out in the monkey brain demonstrated a hitherto undescribed projection from the lateral to the basal nucleus of the amygdaloid complex. In the present study, we used light and electron microscopic techniques to determine whether a similar connection exists in the rat brain and to define what type(s) of synaptic contacts are produced by fibers of this projection. Injections of the lectin tracer Phaseolus vulgaris leucoagglutinin (PHA-L) were placed into several levels of the lateral nucleus and the distribution of fibers in the basal (basolateral) nucleus was evaluated. All lateral nucleus injections resulted in labeled fibers in the basal nucleus, though the density and distribution of labeled fibers depended on the position of the injection site within the lateral nucleus. In general, the heaviest labeling of the basal nucleus was observed after injections at midrostrocaudal levels of the lateral nucleus, especially when the injection was located ventrally. Fibers originating from cells labeled by these injections were observed throughout much of the rostrocaudal extent of the basal nucleus. Rostrally situated injections resulted in substantially lower levels of labeled fibers in the basal nucleus. Injections placed caudally in the lateral nucleus resulted in light to medium levels of labeled fibers in the basal nucleus; the terminal field in these cases did not extend as far rostrally as after the rostral and midlevel injections. Electron microscopic analysis of PHA-L labeled fibers revealed that they contributed synapses to the basal nucleus. The majority of PHA-L labeled terminals formed asymmetric contacts on dendritic spines or shafts; a smaller number of PHA-L labeled terminals formed symmetrical synapses.  相似文献   
92.
93.
Pitkänen A 《Epilepsy research》2002,50(1-2):141-160
Results of experiments performed in animal epilepsy models and human epilepsy during the past decade indicate that the epileptic brain is not a stable neuronal network, but undergoes modifications caused by the underlying etiology and/or recurrent seizures. In many forms of epilepsy, such as temporal lobe epilepsy, the underlying etiologic factor triggers a cascade of events (epileptogenesis) leading to spontaneous seizures and cognitive decline. In some patients, the condition progresses, due in part to recurrent seizures. The current treatment of epilepsy focuses exclusively on preventing or suppressing seizures, which are symptoms of the underlying disease. Now, however, we are beginning to understand the underlying neurobiology of the epileptic process, as well as factors that might predict the risk of progression in individual patients. Thus, there are new opportunities to develop neuroprotective and antiepileptogenic treatments for patients who, if untreated, would develop drug-refractory epilepsy associated with cognitive decline. These treatments might improve the long-term outcome and quality-of-life of patients with epilepsy. Here we review the available data regarding the neuroprotective effects of antiepileptic drugs (AEDs) at different phases of the epileptic process. Analysis of published data suggests that initial-insult modification and prevention of the progression of seizure-induced damage are candidate indications for treatment with AEDs. An understanding of the molecular mechanisms underlying the progression of epileptic process will eventually show what role AEDs have in the neuroprotective and antiepileptogenic treatment regimen.  相似文献   
94.
New pharmacotherapy for epilepsy   总被引:2,自引:0,他引:2  
In the majority of cases, epilepsy develops in three phases: (i) initial brain damaging insult (eg, head trauma, stroke, status epilepticus), resulting in (ii) epileptogenesis, which in turn leads to (iii) recurrent seizures (epilepsy). The current treatment of epilepsy, however, focuses exclusively on the prevention or suppression of seizures, ie, the end result of the disease process. Recent findings regarding the sequence of neurobiological changes leading to epilepsy and its molecular basis have raised the question of whether the disease process of epileptogenesis can be prevented, or at least modified in such a way that the epilepsy that develops is milder, easier to treat, non-progressive and without cognitive decline and drug-resistance. Furthermore, if epilepsy has already emerged, can the harmful effects of seizures on the brain be alleviated? Experimental data indicate that attenuation of the severity of the initial insults associated with seizure activity by anti-epileptic drugs improves the outcome by reducing epileptogenesis, resulting in a milder disease. Although there are no true anti-epileptogenic compounds that interfere with the molecular cascades underlying epileptogenesis, there are several new concepts that offer new targets for the treatment of epileptogenesis and disease modification, including neurotrophins, neuropeptides, caspase inhibitors and anti-inflammatory agents.  相似文献   
95.
Antiepileptic drugs (AEDs) are designed to prevent and suppress seizure activity. Their effects on calcium influx and molecular cascades contributing to necrotic and apoptotic neuronal death, however, suggests that they have functions other than just suppression of excitability. The neuroprotective effects of 20 AEDs currently in use or being investigated in Phase II - III clinical trials for treatment of epilepsy are reviewed. Data analyses is complicated by several factors. Firstly, the available data on the neuroprotective effects of different AEDs varies largely. Secondly, most of the evidence demonstrating neuroprotective effects comes from stroke models and it is uncertain whether these data can be extrapolated to other conditions, such as status epilepticus (SE) or traumatic brain injury. Thirdly, data obtained in adult animals cannot be extrapolated to young animals without caution. For example, AEDs protecting adult brain from stroke or SE-induced injury can cause apoptosis in immature brain. Finally, data comparison is complicated by the variability in study designs and methodologies between studies. With these caveats in mind, an analysis of the available data suggests that AEDs with different mechanisms of action can have mild-to-moderate neuroprotective effects. It is difficult, however, to associate the neuroprotective effects with a favourable functional outcome. For example, it is difficult to conclude that administration of AEDs during the latency phase would have an effect on the molecular cascades underlying epileptogenesis. The few favourable data demonstrating a decrease in the incidence of epilepsy after SE are probably related to the administration of AEDs during SE, which resulted in modification/alleviation of the insult itself and consequently, reduced its epileptogenecity. These experimental data, however, are clinically important because they show that early intervention of SE has an effect on long-term functional outcome. These observations emphasise the need to use additional outcome measures, such as markers of normal development or cognitive performance, when the benefits of neuroprotection achieved by the use of neuroprotective AEDs are assessed.  相似文献   
96.
Prevention of epileptogenesis in patients with acute brain damaging insults like status epilepticus (SE) is a major challenge. We investigated whether lamotrigine (LTG) treatment started during SE is antiepileptogenic or disease-modifying. To mimic a clinical study design, LTG treatment (20 mg/kg) was started 2 h after the beginning of electrically induced SE in 14 rats and continued for 11 weeks (20 mg/kg per day for 2 weeks followed by 10 mg/kg per day for 9 weeks). One group of rats (n = 14) was treated with vehicle. Nine non-stimulated rats with vehicle treatment served as controls. Outcome measures were occurrence of epilepsy, severity of epilepsy, and histology (neuronal loss, mossy fiber sprouting). Clinical occurrence of seizures was assessed with 1-week continuous video-electroencephalography monitoring during the 11th (i.e. during treatment) and 14th week (i.e. after drug wash-out) after SE. LTG reduced the number of electrographic seizures during SE to 43% of that in the vehicle group (P < 0.05). In the vehicle group, 93% (13/14), and in the LTG group, 100% (14/14) of the animals, developed epilepsy. In both groups, 64% of the rats had severe epilepsy (seizure frequency >1 per day). The mean frequency of spontaneous seizures, seizure duration, or behavioral severity of seizures did not differ between groups. The severity of hippocampal neuronal damage and density of mossy fiber sprouting were similar. In LTG-treated rats with severe epilepsy, however, the duration of seizures was shorter (34 versus 54s, P < 0.05) and the behavioral seizure score was milder (1.4 versus 3.4, P < 0.05) during LTG treatment than after drug wash-out. LTG treatment started during SE and continued for 11 weeks was not antiepileptogenic but did not worsen the outcome. These data, together with earlier studies of other antiepileptic drugs, suggest that strategies other than Na(+)-channel blockade should be explored to modulate the molecular cascades leading to epileptogenesis after SE.  相似文献   
97.
Brain-derived neurotrophic factor (BDNF) regulates neuronal survival, differentiation and plasticity. It has been shown to promote epileptogenesis and transgenic mice with decreased and increased BDNF signaling show opposite alterations in epileptogenesis. However, the mechanisms of BDNF action are largely unknown. We studied the gene expression changes 12 days after kainic acid-induced status epilepticus in transgenic mice overexpressing either the functional BDNF receptor trkB or a dominant-negative truncated trkB. Epileptogenesis produced marked changes in expression of 27 of 1090 genes. Cluster analysis revealed BDNF signalling-mediated regulation of functional gene classes involved in cellular transport, DNA repair and cell death, including kinesin motor kinesin family member 3A involved in cellular transport. Furthermore, the expression of cytoskeletal and extracellular matrix components, such as tissue inhibitor of metalloproteinase 2 was altered, emphasizing the importance of intracellular transport and interplay between neurons and glia during epileptogenesis. Finally, mice overexpressing the dominant-negative trkB, which were previously shown to have reduced epileptogenesis, showed a decrease in mRNAs of several growth-associated genes, including growth-associated protein 43. Our data suggest that BDNF signaling may partly mediate the development of epilepsy and propose that regrowth or repair processes initiated by status epilepticus and promoted by BDNF signaling may not be as advantageous as previously thought.  相似文献   
98.
Several studies implicate a role for the amygdala in processing of emotional memories that might partially occur in the connections between the amygdala and the hippocampal-parahippocampal areas. The present study was designed to determine if the pathway from the amygdala to the entorhinal cortex becomes activated during acquisition of fear-conditioning. First, the retrograde tracer Fluoro-Gold (FG) was iontophoresed into the entorhinal cortex in rats. Following habituation, animals were divided into five groups: (i) controls that received another habituation session; (ii) animals given a tone only; (iii) animals given a footshock only; (iv) animals given an unpaired presentation of a shock and a tone; and (v) conditioned animals that received a single tone-footshock pairing. Then double-immunohistochemistry against c-Fos and FG or glutamate decarboxylase (GAD67) was performed. The numbers and densities of labelled neurons were calculated in the lateral and basal nuclei of the amygdala. In conditioned animals the number and density of c-Fos-positive nuclei increased in dorsolateral and medial divisions of the lateral nucleus compared with the control group (P < 0.05). Additionally, in the medial division of the lateral nucleus, the percentage of c-Fos/FG double-labelled neurons was higher in the conditioned animals compared with the other groups (P < 0.05). Only a very few GAD67-positive interneurons expressed c-Fos. These data indicate that a part of the amygdalo-entorhinal pathway is activated during acquisition of fear-conditioning. These data support the idea that emotionally relevant sensory information in the lateral nucleus can influence information processing in the hippocampal and parahippocampal areas via the amygdalo-entorhinal pathway.  相似文献   
99.
100.
Preclinical research has facilitated the discovery of valuable drugs for the symptomatic treatment of epilepsy. Yet, despite these therapies, seizures are not adequately controlled in a third of all affected individuals, and comorbidities still impose a major burden on quality of life. The introduction of multiple new therapies into clinical use over the past two decades has done little to change this. There is an urgent demand to address the unmet clinical needs for: (1) new symptomatic antiseizure treatments for drug-resistant seizures with improved efficacy/tolerability profiles, (2) disease-modifying treatments that prevent or ameliorate the process of epileptogenesis, and (3) treatments for the common comorbidities that contribute to disability in people with epilepsy. New therapies also need to address the special needs of certain subpopulations, that is, age- or gender-specific treatments. Preclinical development in these treatment areas is complex due to heterogeneity in presentation and etiology, and may need to be formulated with a specific seizure, epilepsy syndrome, or comorbidity in mind. The aim of this report is to provide a framework that will help define future guidelines that improve and standardize the design, reporting, and validation of data across preclinical antiepilepsy therapy development studies targeting drug-resistant seizures, epileptogenesis, and comorbidities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号