首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2540868篇
  免费   206710篇
  国内免费   4550篇
耳鼻咽喉   36328篇
儿科学   77694篇
妇产科学   66647篇
基础医学   359926篇
口腔科学   71817篇
临床医学   229948篇
内科学   503912篇
皮肤病学   52494篇
神经病学   216205篇
特种医学   100432篇
外国民族医学   950篇
外科学   380931篇
综合类   56945篇
现状与发展   1篇
一般理论   1026篇
预防医学   207061篇
眼科学   58674篇
药学   189770篇
  4篇
中国医学   4901篇
肿瘤学   136462篇
  2019年   20322篇
  2018年   30103篇
  2017年   22680篇
  2016年   24474篇
  2015年   27649篇
  2014年   38062篇
  2013年   57989篇
  2012年   81705篇
  2011年   85304篇
  2010年   48754篇
  2009年   45571篇
  2008年   79765篇
  2007年   84838篇
  2006年   84827篇
  2005年   82568篇
  2004年   79126篇
  2003年   76020篇
  2002年   74580篇
  2001年   115166篇
  2000年   119245篇
  1999年   100755篇
  1998年   28380篇
  1997年   25967篇
  1996年   25850篇
  1995年   24982篇
  1994年   23503篇
  1993年   21859篇
  1992年   80850篇
  1991年   77745篇
  1990年   74877篇
  1989年   72030篇
  1988年   67014篇
  1987年   65905篇
  1986年   62376篇
  1985年   59346篇
  1984年   44985篇
  1983年   38309篇
  1982年   23299篇
  1981年   20664篇
  1979年   41972篇
  1978年   29438篇
  1977年   24796篇
  1976年   23184篇
  1975年   24411篇
  1974年   30173篇
  1973年   28607篇
  1972年   26765篇
  1971年   24638篇
  1970年   23237篇
  1969年   21568篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
BACKGROUND AND PURPOSE:Accurate and reliable detection of white matter hyperintensities and their volume quantification can provide valuable clinical information to assess neurologic disease progression. In this work, a stacked generalization ensemble of orthogonal 3D convolutional neural networks, StackGen-Net, is explored for improving automated detection of white matter hyperintensities in 3D T2-FLAIR images.MATERIALS AND METHODS:Individual convolutional neural networks in StackGen-Net were trained on 2.5D patches from orthogonal reformatting of 3D-FLAIR (n = 21) to yield white matter hyperintensity posteriors. A meta convolutional neural network was trained to learn the functional mapping from orthogonal white matter hyperintensity posteriors to the final white matter hyperintensity prediction. The impact of training data and architecture choices on white matter hyperintensity segmentation performance was systematically evaluated on a test cohort (n = 9). The segmentation performance of StackGen-Net was compared with state-of-the-art convolutional neural network techniques on an independent test cohort from the Alzheimer’s Disease Neuroimaging Initiative-3 (n = 20).RESULTS:StackGen-Net outperformed individual convolutional neural networks in the ensemble and their combination using averaging or majority voting. In a comparison with state-of-the-art white matter hyperintensity segmentation techniques, StackGen-Net achieved a significantly higher Dice score (0.76 [SD, 0.08], F1-lesion (0.74 [SD, 0.13]), and area under precision-recall curve (0.84 [SD, 0.09]), and the lowest absolute volume difference (13.3% [SD, 9.1%]). StackGen-Net performance in Dice scores (median = 0.74) did not significantly differ (P = .22) from interobserver (median = 0.73) variability between 2 experienced neuroradiologists. We found no significant difference (P = .15) in white matter hyperintensity lesion volumes from StackGen-Net predictions and ground truth annotations.CONCLUSIONS:A stacked generalization of convolutional neural networks, utilizing multiplanar lesion information using 2.5D spatial context, greatly improved the segmentation performance of StackGen-Net compared with traditional ensemble techniques and some state-of-the-art deep learning models for 3D-FLAIR.

White matter hyperintensities (WMHs) correspond to pathologic features of axonal degeneration, demyelination, and gliosis observed within cerebral white matter.1 Clinically, the extent of WMHs in the brain has been associated with cognitive impairment, Alzheimer’s disease and vascular dementia, and increased risk of stroke.2,3 The detection and quantification of WMH volumes to monitor lesion burden evolution and its correlation with clinical outcomes have been of interest in clinical research.4,5 Although the extent of WMHs can be visually scored,6 the categoric nature of such scoring systems makes quantitative evaluation of disease progression difficult. Manually segmenting WMHs is tedious, prone to inter- and intraobserver variability, and is, in most cases, impractical. Thus, there is an increased interest in developing fast, accurate, and reliable computer-aided automated techniques for WMH segmentation.Convolutional neural network (CNN)-based approaches have been successful in several semantic segmentation tasks in medical imaging.7 Recent works have proposed using deep learning–based methods for segmenting WMHs using 2D-FLAIR images.8-11 More recently, a WMH segmentation challenge12 was also organized (http://wmh.isi.uu.nl/) to facilitate comparison of automated segmentation of WMHs of presumed vascular origin in 2D multislice T2-FLAIR images. Architectures that used an ensemble of separately trained CNNs showed promising results in this challenge, with 3 of the top 5 winners using ensemble-based techniques.12Conventional 2D-FLAIR images are typically acquired with thick slices (3–4 mm) and possible slice gaps. Partial volume effects from a thick slice are likely to affect the detection of smaller lesions, both in-plane and out-of-plane. 3D-FLAIR images, with isotropic resolution, have been shown to achieve higher resolution and contrast-to-noise ratio13 and have shown promising results in MS lesion detection using 3D CNNs.14 Additionally, the isotropic resolution enables viewing and evaluation of the images in multiple planes. This multiplanar reformatting of 3D-FLAIR without the use of interpolating kernels is only possible due to the isotropic nature of the acquisition. Network architectures that use information from the 3 orthogonal views have been explored in recent works for CNN-based segmentation of 3D MR imaging data.15 The use of data from multiple planes allows more spatial context during training without the computational burden associated with full 3D training.16 The use of 3 orthogonal views simultaneously mirrors how humans approach this segmentation task.Ensembles of CNNs have been shown to average away the variances in the solution and the choice of model- and configuration-specific behaviors of CNNs.17 Traditionally, the solutions from these separately trained CNNs are combined by averaging or using a majority consensus. In this work, we propose the use of a stacked generalization framework (StackGen-Net) for combining multiplanar lesion information from 3D CNN ensembles to improve the detection of WMH lesions in 3D-FLAIR. A stacked generalization18 framework learns to combine solutions from individual CNNs in the ensemble. We systematically evaluated the performance of this framework and compared it with traditional ensemble techniques, such as averaging or majority voting, and state-of-the-art deep learning techniques.  相似文献   
102.
103.
104.

Objective

The “Centre Hospitalier Francois Dunan” is located on an isolated island and ensures patients care in hemodialysis thanks to telemedicine support. Many research studies have demonstrated the importance of hemodialysis fluids composition to reduce morbidity in patients on chronic hemodialysis. The aim of this study was to identify the risks inherent in the production of dialysis fluids in a particular context, in order to set up an improvement action plan to improve risk control on the production of dialysis fluids.

Methods

The risk analysis was conducted with the FMECA methodology (Failure Mode, Effects and Criticality Analysis) by a multi professional work group. Three types of risk have been reviewed: technical risks that may impact the production of hemodialysis fluids, health risks linked with chemical composition and health risks due to microbiological contamination of hemodialysis fluids.

Results

The work group, in close cooperation with the expert staff of the dialysis center providing telemedicine assistance, has developed an action plan in order to improve the control of the main risks brought to light by the risk analysis.

Conclusion

The exhaustive analysis of the risks and their prioritisation have permitted to establish a relevant action plan in this improving quality of dialysis fluids approach. The risk control of dialysis fluids is necessary for the security of dialysis sessions for patients, even more when these sessions are realized by telemedicine in Saint-Pierre-et-Miquelon.  相似文献   
105.
106.

Purpose

Chest wall pain is an uncommon but bothersome late complication following lung stereotactic body radiation therapy. Despite numerous studies investigating predictors of chest wall pain, no clear consensus has been established for a chest wall constraint. The aim of our study was to investigate factors related to chest wall pain in a homogeneous group of patients treated at our institution.

Patients and methods

All 122 patients were treated with the same stereotactic body radiation therapy regimen of 48 Gy in three fractions, seen for at least 6 months of follow-up, and planned with heterogeneity correction. Chest wall pain was scored according to the Common Terminology Criteria for Adverse Events classification v3.0. Patient (age, sex, diabetes, osteoporosis), tumour (planning target volume, volume of the overlapping region between planning target volume and chest wall) and chest wall dosimetric parameters (volumes receiving at least 30, 40, and 50 Gy, the minimal doses received by the highest irradiated 1, 2, and 5 cm3, and maximum dose) were collected. The correlation between chest wall pain (grade 2 or higher) and the different parameters was evaluated using univariate and multivariate logistic regression.

Results

Median follow-up was 18 months (range: 6–56 months). Twelve patients out of 122 developed chest wall pain of any grade (seven with grade 1, three with grade 2 and two with grade 3 pain). In univariate analysis, only the volume receiving 30 Gy or more (P = 0.034) and the volume of the overlapping region between the planning target volume and chest wall (P = 0.038) significantly predicted chest wall pain, but these variables were later proved non-significant in multivariate regression.

Conclusion

Our analysis could not find any correlation between the studied parameters and chest wall pain. Considering our present study and the wide range of differing results from the literature, a reasonable conclusion is that a constraint for chest wall pain is yet to be defined.  相似文献   
107.
To evaluate the changes in alveolar contour after guided bone regeneration (GBR) with two different combinations of biomaterials in dehiscence defects arou  相似文献   
108.
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号