首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2030篇
  免费   144篇
  国内免费   4篇
耳鼻咽喉   19篇
儿科学   10篇
妇产科学   19篇
基础医学   429篇
口腔科学   20篇
临床医学   219篇
内科学   492篇
皮肤病学   31篇
神经病学   221篇
特种医学   26篇
外科学   236篇
综合类   3篇
预防医学   118篇
眼科学   26篇
药学   181篇
中国医学   2篇
肿瘤学   126篇
  2023年   9篇
  2022年   73篇
  2021年   153篇
  2020年   59篇
  2019年   67篇
  2018年   71篇
  2017年   48篇
  2016年   56篇
  2015年   100篇
  2014年   83篇
  2013年   84篇
  2012年   161篇
  2011年   171篇
  2010年   90篇
  2009年   71篇
  2008年   124篇
  2007年   99篇
  2006年   103篇
  2005年   99篇
  2004年   85篇
  2003年   82篇
  2002年   75篇
  2001年   22篇
  2000年   12篇
  1999年   11篇
  1998年   14篇
  1997年   13篇
  1995年   5篇
  1993年   4篇
  1992年   6篇
  1991年   7篇
  1990年   9篇
  1989年   8篇
  1988年   5篇
  1987年   6篇
  1986年   11篇
  1985年   10篇
  1984年   13篇
  1983年   6篇
  1978年   5篇
  1977年   6篇
  1975年   2篇
  1974年   5篇
  1973年   2篇
  1972年   7篇
  1969年   2篇
  1968年   2篇
  1967年   3篇
  1966年   4篇
  1965年   2篇
排序方式: 共有2178条查询结果,搜索用时 171 毫秒
71.
Irreversible electroporation is a treatment option used for focal therapy. In this systematic review, we summarise data on irreversible electroporation outcomes in patients with localised prostate cancer. We performed a literature search in 3 databases and included articles with own data on irreversible electroporation results in patients with localised prostate cancer. Primary outcome was procedure efficacy measured as the absence of cancer in the treatment area on the follow-up biopsy. Secondary outcomes were the absence of prostate cancer recurrence in the treatment area on MRI, out-of-field recurrence, complications and functional outcomes (erectile function and micturition). In-field recurrence rate was 0%–39% and out-field 6.4%–24%. In all studies, PSA level decreased: twice lower than baseline after 4 weeks and by 76% after 2 years. Most of the authors noted sexual and urinary toxicity during the first half year after surgery. However, functional outcomes recovered to baseline after 6 months with mild decrease in sexual function. Complication rates after irreversible electroporation were 0%–1% of Clavien–Dindo III and 5%–20% of Clavien–Dindo I–II. Irreversible electroporation has promise oncological outcomes, rate of post-operative complications and minimal-to-no effects on erectile and urinary function. However, medium and long-term data on cancer-specific and recurrence-free survival are still lacking.  相似文献   
72.
The wound-healing process plays an essential role in the protective response to epidermal injury by tissue regeneration. In the elderly, skin functions deteriorate as a consequence of morphological and structural changes. This study aimed to evaluate and compare the effect of low-level laser therapy (LLLT) in cutaneous wound healing in young and aged rats. A total of 60 male rats comprising 30 young (±30 days) and 30 aged (±500 days) was used. The animals were divided into four experimental groups and underwent skin wound and/or treatment with LLLT (660 nm, 30 mW, 1.07 W/cm2, 0.028 cm2, 72 J/cm2, and 2 J). Analyses were conducted to verify the effects of LLLT in the tissue repair process, in the gene expression, and protein expression of TNF-α, IL-1β, and IL-10, obtained in skin wound model. Results showed that there were significant differences between the young control group and the aged control group and their respective treated groups (LLLT young and LLLT aged). We conclude that LLLT has shown to be effective in the treatment of skin wounds in young and aged animals at different stages of the tissue repair process, which suggests that different LLLT dosimetry should be considered in treatment of subjects of different ages. Further clinical trials are needed to confirm these findings in clinical settings.  相似文献   
73.
The neonatal Fc receptor (FcRn) is a major regulator of IgG and albumin homeostasis systemically and in the kidneys. We investigated the role of FcRn in the development of immune complex–mediated glomerular disease in mice. C57Bl/6 mice immunized with the noncollagenous domain of the α3 chain of type IV collagen (α3NC1) developed albuminuria associated with granular capillary loop deposition of exogenous antigen, mouse IgG, C3 and C5b-9, and podocyte injury. High-resolution imaging showed abundant IgG deposition in the expanded glomerular basement membrane, especially in regions corresponding to subepithelial electron dense deposits. FcRn-null and -humanized mice immunized with α3NC1 developed no albuminuria and had lower levels of serum IgG anti-α3NC1 antibodies and reduced glomerular deposition of IgG, antigen, and complement. Our results show that FcRn promotes the formation of subepithelial immune complexes and subsequent glomerular pathology leading to proteinuria, potentially by maintaining higher serum levels of pathogenic IgG antibodies. Therefore, reducing pathogenic IgG levels by pharmacologic inhibition of FcRn may provide a novel approach for the treatment of immune complex–mediated glomerular diseases. As proof of concept, we showed that a peptide inhibiting the interaction between human FcRn and human IgG accelerated the degradation of human IgG anti-α3NC1 autoantibodies injected into FCRN-humanized mice as effectively as genetic ablation of FcRn, thus preventing the glomerular deposition of immune complexes containing human IgG.The MHC class I–like neonatal Fc receptor (FcRn), a heterodimer comprising a heavy chain and β2-microglobulin light chain, is the major regulator of IgG and albumin homeostasis.1 Perinatally, FcRn mediates the transfer of IgG from mother to offspring, across the placenta in primates and trans-intestinally in suckling rodents. Throughout life, FcRn protects IgG and albumin from catabolism, explaining the unusually long t1/2 and high serum levels of these proteins. IgG and albumin taken up by cells by pinocytosis bind strongly to FcRn at pH 6.0–6.5 in endosomes. FcRn-bound ligands are then recycled to the plasma membrane, where they dissociate at pH 7.4, whereas IgG and albumin not bound to FcRn are targeted to lysosomes for degradation. FcRn is thought to promote some autoimmune diseases because it protects pathogenic IgG from degradation. For instance, Fcrn−/− mice are resistant to passive transfer of arthritis by K/BxN sera and autoimmune skin pathology induced by antibodies targeting autoantigens at the dermal–epidermal junction, although this protection can be overcome by excess autoantibodies.24In kidneys, FcRn is expressed in podocytes and proximal tubular epithelial cells.5 Overall, renal FcRn reclaims albumin but facilitates elimination of IgG.6 Tubular FcRn mediates IgG transcytosis.7 Podocytes use FcRn to clear IgG from the glomerular basement membrane (GBM).8 IgG accumulates in the glomeruli of aged Fcrn−/− mice due to impaired clearance of IgG from the GBM, and saturating this clearance mechanism by excess ligand potentiates the pathogenicity of nephrotoxic sera in wild-type mice. Podocyte FcRn has been postulated to be involved in the clearance of immune complexes (ICs) present in pathologic conditions such as membranous nephropathy.5 Expression of FcRn in human podocytes is increased in various immune-mediated glomerular diseases.9 Given its role in IgG and albumin handling in the kidneys and systemically, FcRn can be expected to influence the development of immune-mediated kidney diseases at multiple levels. This conjecture awaits experimental verification.To determine the role of FcRn in IgG-mediated glomerular disease, we asked how FcRn deficiency alters the course of disease in mice immunized with the NC1 domain of α3 type IV collagen (α3NC1). We chose this antigen because of its reported ability to induce disease in C57Bl/6 (B6) mice,10 corroborated in pilot studies (Supplemental Figure 1). Fcrn−/− mice are hypoalbuminemic due to impaired albumin recycling,11 and also exhibit reduced urinary albumin excretion.12 As a control for this potential confounder, we used FCRN-humanized mice, which have normal serum albumin because human FcRn recycles mouse albumin but not mouse IgG.13All mice immunized with α3NC1 developed circulating mouse IgG anti-α3NC1 antibodies, which reached the maximum titer about 6 weeks later and gradually declined thereafter. At all times, the levels of mouse IgG anti-α3NC1 antibodies in sera from Fcrn−/− mice and FCRN-humanized mice were approximately 50%–70% lower than those in wild-type mouse sera (Figure 1A). The results were similar for mouse IgG1, IgG2b, and IgG2c anti-α3NC1 antibodies (Supplemental Figure 2). Wild-type B6 mice immunized with α3NC1 started developing progressive albuminuria 8–10 weeks later (Figure 1B). By week 14, the urinary albumin creatinine ratio increased approximately 100-fold, and hypoalbuminemia developed (Figure 1C). Urinary albumin excretion in Fcrn−/− mice and FCRN-humanized mice immunized with α3NC1 was not significantly higher than in adjuvant-immunized control mice. No mice developed renal failure (Supplemental Figure 3).Open in a separate windowFigure 1.FcRn ablation reduces serum levels of mouse IgG anti-α3NC1 antibodies and prevents the development of albuminuria in α3NC1-immunized mice. (A) The left panel shows circulating mIgG anti-α3NC1 antibodies from C57Bl6 wild-type mice (○), Fcrn−/− mice (□), FCRN-humanized (hFCRN) mice (◇), and the control CFA group (△), which are assayed by indirect ELISA in plates coated with α3NC1 (100 ng/well). Mouse sera are diluted 1:5000. The right panel shows the significance of circulating mIgG anti-α3NC1 antibody differences among groups at week 12, as assessed by one-way ANOVA followed by Bonferroni post tests for pairwise comparisons. (B) The left panel shows that the urinary albumin creatinine ratio (mean±SEM) time course is monitored in C57Bl6 wild-type mice (○), Fcrn−/− mice (□), and hFCRN mice (◇) immunized with α3NC1 (n=5–8 mice in each group, from two separate experiments). Mice in the control group (△) are immunized with adjuvant alone (n=9). The right panel shows the urinary albumin creatinine ratio (mean±SEM) at 14 weeks, when mice are euthanized. The significance of differences among groups is assessed by one-way ANOVA followed by Bonferroni post tests for pairwise comparisons. (C) The left panel shows SDS-PAGE analysis of serum (0.5 µl/lane) and urine samples (2 µl/lane) from CFA-immunized control mice (a) and α3NC1-immunized wild-type mice (b), Fcrn−/− mice (c), and hFCRN mice (d) collected at week 14. The right panel presents a densitometric analysis of the relative levels of albumin in mouse serum samples showing that α3NC1-immunized wild-type mice developed hypoalbuminemia. *P<0.05 by two-tailed t test versus CFA-immunized wild-type mice; **P<0.01; ***P<0.001. ns, not significant; WT, wild type.At 14 weeks after α3NC1 immunization, kidneys examined by light microscopy showed mild glomerular pathology, with few crescents and relatively little inflammation (Figure 2A), similar to α3NC1-immunized DBA/1 mice with comparable albuminuria.14,15 Electron microscopy showed extensive subepithelial IC deposits surrounded by an expanded GBM and effacement of podocyte foot processes in α3NC1-immunized B6 mice, whereas Fcrn−/− mice had fewer subepithelial deposits (Figure 2B, Supplemental Figure 4). Immunofluorescence staining showed granular capillary loop deposition of mouse IgG, exogenous antigen, C3, and C5b-9, more intense in wild-type mice than in Fcrn−/− mice and FCRN-humanized mice (Figure 2, Ca–Cp, Supplemental Figure 5). A loss of nephrin staining, indicative of podocyte injury, occurred in α3NC1-immunized B6 mice but not in Fcrn−/− mice or FCRN-humanized mice (Figure 2, Cq–Ct).Open in a separate windowFigure 2.FcRn deficiency reduces formation of pathogenic subepithelial ICs. (A) Light microscopic evaluation of kidneys from adjuvant-immunized control mice (a) and α3NC1-immunized wild-type mice (b) and Fcrn−/− mice (c) revealed few pathogenic changes and the absence of glomerular inflammation (periodic acid–Schiff staining). (B) Transmission electron microscopy shows normal GBM (arrow) and podocyte foot processes in control mice (a), extensive subepithelial electron dense deposits (arrowhead), thickened GBM, and podocyte foot process effacement in α3NC1-immunized wild-type mice (b), and fewer IC deposits in the Fcrn−/− mice (c). (C) Immunofluorescence analysis of kidneys from adjuvant-immunized control mice (a, e, i, m, and q) and α3NC1-immunized wild-type mice (b, f, j, n, and r), FcRn−/− mice (c, g, k, o, and s), and hFCRN mice (d, h, l, p, and t) evaluate the deposition of mouse IgG (a–d), exogenous α3NC1 antigen stained by mAb RH34 (e–h), mouse C3c (i–l), C5b-9 (m–p), and nephrin staining (q–t) at 14 weeks. Wild-type mice exhibit linear-granular GBM deposition of mouse IgG and granular GBM deposition of exogenous antigen, C3, and C5b-9, which are attenuated in Fcrn−/− mice and hFCRN mice and essentially absent in control mice. Compared with control mice, α3NC1-immunized wild-type mice but not Fcrn−/− or hFCRN mice exhibit a loss of nephrin staining, indicative of podocyte injury. WT, wild type; EM, electron microscopy, PAS, periodic acid–Schiff. Original magnification, ×400 in A; ×2850 in B; ×200 in C.Because B6 mice immunized with bovine GBM NC1 hexamers have normal kidney function and histology despite linear GBM deposition of IgG autoantibodies binding to mouse α345(IV) collagen (Supplemental Figure 1), the question arises as to what causes proteinuria in α3NC1-immunized mice. Because the clinical presentation, morphology, and effector mechanisms depend on where ICs are localized in the capillary wall, we compared IgG distribution in α3NC1-immunized mice and mice injected with anti-α3NC1 antibodies modeling anti-GBM autoantibodies. The distribution and relative abundance of mouse IgG, as imaged by immunoperoxidase immunoelectron microscopy and stochastic optical reconstruction microscopy (STORM), a method for super-resolution fluorescence microscopy, were concordant. In α3NC1-immunized mice, IgG deposition was abundant in the areas of expanded GBM and especially in regions corresponding to the subepithelial dense deposits seen by routine electron microscopy. By contrast, in mice injected with α3NC1-specific anti-GBM mAb, the IgG was confined to an ultrastructurally normal GBM that lacked subepithelial deposits (Figure 3).Open in a separate windowFigure 3.Localization of IgG by high-resolution imaging. The localization of mouse IgG in glomerular capillary walls of wild-type mice immunized with α3NC1 (A, C–E), or intravenously injected with anti-mouse α3NC1 IgG mAb 8D1 (B, F–H) is determined by immunoperoxidase electron microscopy (A and B) and STORM imaging (C–H). In A, the GBM is irregularly thickened, and abundant electron dense peroxidase reaction product is present in discontinuous, subepithelial patterns beneath broadly effaced podocyte foot processes (arrows). In B, the peroxidase reaction product is diffusely present throughout the GBM (arrowhead), but less abundant compared with A. Electron dense deposits are absent, and podocyte foot process architecture appears normal. (C–E) By STORM imaging, anti-agrin (blue) identifies both normal and thickened areas of the GBM, both of which contain dense accumulations of mouse IgG throughout (red). The electron microscopy correlation in E shows GBM staining with respect to the podocytes and endothelial cells. (F–H) IgG mAb 8D1 (red) is present in the GBM, which shows no evidence of thickening. CL, capillary lumen; EM, electron microscopy En, endothelium;Po, podocyte.Subepithelial ICs, a hallmark of human membranous nephropathy (MN), form when IgG antibodies bind to podocyte antigens, such as phospholipase A2 receptor (PLA2R) and neutral endopeptidase (NEP), or to planted antigens, such as cationic BSA.1618 Subsequent expansion of the GBM, complement activation, and podocyte injury by C5b-9 cause proteinuria. Although it is unexpected, formation of subepithelial ICs in α3NC1-immunized mice may be explained by exogenous α3NC1 deposited in glomeruli acting as a planted antigen.19 Alternatively, anti-α3NC1 antibodies in complex with α3NC1 antigen may act as surrogate antipodocyte antibodies, because α3NC1-containing ICs bind to podocytes.20 After four immunizations with α3NC1 monomers, B6 mice and DBA/1 mice eventually develop crescentic GN by 26 and 10 weeks, respectively.10,14 The combination of subepithelial ICs and crescentic anti-GBM antibody GN was most recently described in a series of eight patients with circulating anti-α3NC1 autoantibodies but undetectable anti-PLA2R autoantibodies.21In contrast to wild-type B6 mice, congenic Fcrn−/− mice and FCRN-humanized mice did not develop albuminuria after α3NC1 immunization. Their resistance to proteinuria was associated with lower serum titers of anti-α3NC1 IgG antibodies and reduced glomerular deposition of IgG, antigen, C3, and C5b-9. Because C5b-9 is an essential mediator of podocyte damage and proteinuria by subepithelial ICs,22,23 reduced complement activation potentially explains the attenuated glomerular pathology in FcRn-deficient mice. The resistance of FCRN-humanized mice indicates that FcRn promotes IC-mediated glomerular disease due to its interaction with IgG rather than albumin. We propose that FcRn promotes the development of subepithelial ICs and subsequent glomerular injury primarily by maintaining higher serum levels of pathogenic IgG (Supplemental Figure 6). However, we cannot formally exclude a possible pathogenic role of podocyte FcRn, whose stimulation by ICs may induce maladaptive signaling.9 Future studies in mice with podocyte-specific ablation of FcRn would address this possibility.Our findings identify FcRn as a potential target for therapeutic intervention in IC-mediated glomerular diseases, typically treated with nonspecific immunosuppressants that are toxic and sometimes ineffective. More specific therapies include ablation of B cells by rituximab. In patients with idiopathic MN who respond to rituximab therapy, serum levels of anti-PLA2R IgG autoantibodies decline over a period of many months, and their disappearance is followed by resolution of proteinuria.24 The slow decline in proteinuria is problematic for patients already suffering from complications of nephrotic syndrome, who would benefit from ancillary therapies that reduce pathogenic IgG antibodies more rapidly. This may be achieved by inhibiting FcRn.One implementation of this concept is therapy with high-dose intravenous Ig (HD-IVIG). HD-IVIG accelerates the degradation of IgG by saturating FcRn,25 one of the mechanisms that explain the beneficial effects of HD-IVIG therapy in some autoimmune diseases.3 In pregnant women with circulating anti-NEP alloantibodies mediating antenatal MN, treatment with HD-IVIG reduces the titers of IgG alloantibodies by approximately 30% within 2–3 weeks.26 However, HD-IVIG is inefficient, because large amounts of IgG (1–2 g/kg) cause relatively modest reductions in pathogenic IgG titers. Specific FcRn inhibitors recapitulate this activity of HD-IVIG more effectively at lower doses. By reducing pathogenic IgG levels, function-blocking anti-FcRn mAbs ameliorate experimental myasthenia gravis in rats,27 and engineered IgG “Abdegs” that bind with high affinity to FcRn ameliorate arthritis transferred by K/BxN serum.28To assess the translational potential of our findings, we asked whether pharmacologic blockade of human FcRn can reproduce the effects of genetic FcRn deficiency. To this end, FCRN-humanized and Fcrn−/− mice were passively immunized with human IgG containing anti-α3NC1 (Goodpasture) autoantibodies. To inhibit human FcRn, we used a lysine analog of SYN1436 (Figure 4A),29 a peptide that binds with subnanomolar affinity to human FcRn, thus preventing IgG binding.30 In vivo, SYN1436 reduces IgG levels in cynomolgus monkeys by 80%.30 Serum anti-α3NC1 autoantibodies in FCRN-humanized mice treated with anti-FcRn peptide, but not with control peptide, sharply decreased to the same levels as in Fcrn−/− mice (Figure 4B), and were no longer detected after 4 days. In mice, human IgG elicits murine anti-human IgG antibodies, forming ICs that can deposit in glomeruli, as shown in active serum sickness models. Glomerular deposition of ICs containing human IgG was abolished in mice treated with anti-FcRn peptide, but not with control peptide (Figure 4C). Linear GBM deposition of human anti-GBM IgG was not observed, because the epitopes recognized by Goodpasture autoantibodies are completely inaccessible in the mouse GBM.31 These results provide proof of concept that therapies targeting human FcRn effectively lower serum levels of pathogenic human IgG autoantibodies, which could be beneficial in patients with IgG-mediated kidney diseases. Because FcRn also mediates the trans-placental transfer of IgG from mother to the fetus, FcRn inhibition may be particularly attractive for preventing antenatal MN caused by maternal anti-NEP alloantibodies.Open in a separate windowFigure 4.Pharmacologic blockade of human FcRn accelerates the catabolism of human IgG autoantibodies in FCRN-humanized mice. (A) Structure of a peptide that binds with high affinity to human FcRn, competitively inhibiting its interaction with human IgG (top). The control peptide (bottom) containing D-amino acids does not bind to human FcRn. Pen, Sar, and NMeLeu denote penicillamine, sarcosine, and N-methyl-leucine, respectively. (B) Serum level of human IgG anti-α3NC1 antibodies in FCRN-humanized mice treated with anti-FcRn peptide (▪) or control peptide (●) and in Fcrn−/− (▲) mice sera (n=3 in each group) is analyzed by indirect ELISA in plates coated with α3NC1 (100 ng/well). Mouse sera are diluted 1:500. (C) Kidney deposition of human IgG (a and b) and mouse IgG (c and d) in FCRN-humanized mice treated with control peptide (a and c) or anti-FcRn peptide (b and d) is evaluated by direct immunofluorescence staining. Treatment with anti-FcRn peptide prevents the glomerular deposition of ICs containing human IgG.  相似文献   
74.
The NiAl–Cr–Co–X alloys were produced by centrifugal self-propagating high-temperature synthesis (SHS) casting. The effects of dopants X = La, Mo, Zr, Ta, and Re on combustion, as well as the phase composition, structure, and properties of the resulting cast alloys, have been studied. The greatest improvement in overall properties was achieved when the alloys were co-doped with 15% Mo and 1.5% Re. By forming a ductile matrix, molybdenum enhanced strength characteristics up to the values σucs = 1604 ± 80 MPa, σys = 1520 ± 80 MPa, and εpd = 0.79%, while annealing at T = 1250 ℃ and t = 180 min improved strength characteristics to the following level: σucs = 1800 ± 80 MPa, σys = 1670 ± 80 MPa, and εpd = 1.58%. Rhenium modified the structure of the alloy and further improved its properties. The mechanical properties of the NiAl, ZrNi5, Ni0.92Ta0.08, (Al,Ta)Ni3, and Al(Re,Ni)3 phases were determined by nanoindentation. The three-level hierarchical structure of the NiAl–Cr–Co+15%Mo alloy was identified. The optimal plasma treatment regime was identified, and narrow-fraction powders (fraction 8–27 µm) characterized by 95% degree of spheroidization and the content of nanosized fraction <5% were obtained.  相似文献   
75.
76.
77.
78.
Two libraries of substituted benzimidazoles were designed using a ‘scaffold‐hopping’ approach based on reported MDM2‐p53 inhibitors. Substituents were chosen following library enumeration and docking into an MDM2 X‐ray structure. Benzimidazole libraries were prepared using an efficient solution‐phase approach and screened for inhibition of the MDM2‐p53 and MDMX‐p53 protein–protein interactions. Key examples showed inhibitory activity against both targets.  相似文献   
79.
Ductile-to-brittle-transition refers to observable change in fracture mode with decreasing temperature—from slow ductile crack growth to rapid cleavage. It is exhibited by body-centred cubic metals and presents a challenge for integrity assessment of structural components made of such metals. Local approaches to cleavage fracture, based on Weibull stress as a cleavage crack-driving force, have been shown to predict fracture toughness at very low temperatures. However, they are ineffective in the transition regime without the recalibration of Weibull stress parameters, which requires further testing and thus diminishes their predictive capability. We propose new Weibull stress formulation with thinning function based on obstacle hardening model, which modifies the number of cleavage-initiating features with temperature. Our model is implemented as a post-processor of finite element analysis results. It is applied to analyses of standard compact tension specimens of typical reactor pressure vessel steel, for which deformation and fracture toughness properties in the transition regime are available. It is shown that the new Weibull stress is independent of temperature, and of Weibull shape parameter, within the experimental error. It accurately predicts the fracture toughness at any temperature in the transition regime without relying upon empirical fits for the first time.  相似文献   
80.
The effects of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection in women on the gestation course and the health of the fetus, particularly in the first and second trimesters, remain very poorly explored. This report describes a case in which the normal development of pregnancy was complicated immediately after the patient had experienced Coronavirus disease 2019 (COVID-19) at the 21st week of gestation. Specific conditions included critical blood flow in the fetal umbilical artery, fetal growth restriction (1st percentile), right ventricular hypertrophy, hydropericardium, echo-characteristics of hypoxic-ischemic brain injury (leukomalacia in periventricular area) and intraventricular hemorrhage at the 25th week of gestation. Premature male neonate delivered at the 26th week of gestation died after 1 day 18 h due to asystole. The results of independent polymerase chain reaction (PCR), mass spectrometry and immunohistochemistry analyses of placenta tissue, umbilical cord blood and child blood jointly indicated vertical transmission of SARS–CoV-2 from mother to the fetus, which we conclude to be the major cause for the development of maternal vascular malperfusion in the studied case.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号