首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   834篇
  免费   51篇
耳鼻咽喉   15篇
儿科学   19篇
妇产科学   29篇
基础医学   114篇
口腔科学   16篇
临床医学   38篇
内科学   174篇
皮肤病学   137篇
神经病学   45篇
特种医学   16篇
外科学   53篇
综合类   1篇
预防医学   40篇
眼科学   16篇
药学   88篇
中国医学   1篇
肿瘤学   83篇
  2023年   3篇
  2022年   8篇
  2021年   17篇
  2020年   16篇
  2019年   13篇
  2018年   22篇
  2017年   19篇
  2016年   23篇
  2015年   21篇
  2014年   21篇
  2013年   40篇
  2012年   69篇
  2011年   73篇
  2010年   37篇
  2009年   39篇
  2008年   65篇
  2007年   51篇
  2006年   53篇
  2005年   59篇
  2004年   55篇
  2003年   57篇
  2002年   46篇
  2001年   7篇
  2000年   3篇
  1999年   5篇
  1998年   7篇
  1997年   7篇
  1996年   6篇
  1995年   2篇
  1994年   6篇
  1992年   3篇
  1991年   5篇
  1990年   1篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1985年   4篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   4篇
  1980年   1篇
  1978年   4篇
  1974年   1篇
排序方式: 共有885条查询结果,搜索用时 15 毫秒
881.
Poly(ADP-ribose) polymerase (PARP) activation plays a role in repairing injured DNA, while its overactivation is involved in various diseases, including neuronal degradation. In the present study, we investigated the use of a PARP inhibitor, 3,4-dihydro-5-[4-(1-piperidinyl)butoxy]-1(2H)-isoquinolinone (DPQ), whether methylmercury-induced cell death in the primary culture of cerebellar granule cells involved PARP activation. DPQ decreased the methylmercury-induced cell death in a dose-dependent manner. Unexpectedly, this protective effect was DPQ specific; none of the other PARP inhibitors--1,5-dihydroxyisoquinoline, 3-aminobenzamide, or PJ34--affected neuronal cell death. Methylmercury-induced cell death involves the decrease of glutathione (GSH) and production of reactive oxygen species. Therefore, to understand the mechanism by which DPQ inhibits cytotoxicity, we first studied the effect of DPQ on buthionine sulfoximine- or diethyl maleate-induced death of primary cultured cells and human neuroblastoma IMR-32 cells, both of which are mediated by GSH depletion. DPQ inhibited the cell death of both cultured cells, but it did not restore the decrease of cellular GSH by buthionine sulfoximine to the control level. Second, we evaluated the antioxidant activity of PARP inhibitors by methods with ABTS (2-2'-azinobis(3-ethylbenzothiazoline 6-sulfonate) or DPPH (1,1-diphenyl-2-picrylhydrazyl) used as a radical because antioxidants also efficiently suppress methylmercury-induced cell death. The antioxidant activity of DPQ was the lowest among the tested PARP inhibitors. Taken together, our results indicate that DPQ effectively protects cells against methylmercury- and GSH depletion-induced death. Furthermore, they suggest that DPQ exerts its protective effect through a mechanism other than PARP inhibition and direct antioxidation, and that PARP activation is not involved in methylmercury-induced neuronal cell death.  相似文献   
882.
We previously demonstrated that suppression of glucocorticoid secretion by adrenalectomy (ADX) impaired prefrontal cortex-sensitive working memory, but not reference memory. Since the cholinergic system in the hippocampus is also involved in these memories, we examined the effects of glucocorticoid suppression on cholinergic transmission in the rat hippocampus. A microdialysis study revealed that ADX did not affect the basal acetylcholine release, but enhanced the KCl-evoked response. This enhanced response was reversed by the corticosterone replacement treatment. The extracellular choline concentrations increased under both basal and KCl-stimulated conditions in the ADX rats, and these increases were also reversed by the corticosterone replacement. These results indicate that suppression of glucocorticoid secretion enhances cholinergic transmission in the hippocampus in response to stimuli. It is possible that this enhanced cholinergic transmission may not contribute to the ADX-induced working memory impairment, but it may be involved in maintenance of reference memory.  相似文献   
883.
Cancer tissues generally have molecular oxygen and serum component deficiencies because of poor vascularization. Recently, we revealed that ICAM1 is strongly activated through lipophagy in ovarian clear cell carcinoma (CCC) cells in response to starvation of long-chain fatty acids and oxygen and confers resistance to apoptosis caused by these harsh conditions. CD69 is a glycoprotein that is synthesized in immune cells and is associated with their activation through cellular signaling pathways. However, the expression and function of CD69 in nonhematological cells is unclear. Here, we report that CD69 is induced in CCC cells as in ICAM1. Mass spectrometry analysis of phosphorylated peptides followed by pathway analysis revealed that CD69 augments CCC cell binding to fibronectin (FN) in association with the phosphorylation of multiple cellular signaling molecules including the focal adhesion pathway. Furthermore, CD69 synthesized in CCC cells could facilitate cell survival because the CD69–FN axis can induce epithelial–mesenchymal transition. Experiments with surgically removed tumor samples revealed that CD69 is predominantly expressed in CCC tumor cells compared with other histological subtypes of epithelial ovarian cancer. Overall, our data suggest that cancer cell-derived CD69 can contribute to CCC progression through FN.  相似文献   
884.
Maternal factors present in oocytes and surrounding granulosa cells influence early development of embryos. In this study, we searched for epigenetic regulators that are expressed in oocytes and/or granulosa cells. Some of the 120 epigenetic regulators examined were expressed specifically in oocytes and/or granulosa cells. When their expression was examined in young versus aged oocytes or granulosa cells, many were significantly up- or downregulated in aged cells. The maternal role of six genes in development was investigated by generating oocyte-specific knock-out (MKO) mice. Two genes (Mllt10, Kdm2b) did not show maternal effects on later development, whereas maternal effects were evident for Kdm6a, Kdm4a, Prdm3, and Prdm16 for MKO female mice. Offspring from Kdm6a MKO mice underwent perinatal lethality at a higher rate. Pups derived from Prdm3;Prdm16 double MKO showed a higher incidence of postnatal death. Finally, embryos derived from Kdm4a MKO mice showed early developmental defects as early as the peri-implantation stage. These results suggest that many of maternal epigenetic regulators undergo differential expression upon aging. Some, such as Kdm4a, Kdm6a, Prdm3, and Prdm16, have maternal role in later embryonic or postnatal development.  相似文献   
885.
Myopathic Ehlers-Danlos syndrome (mEDS) is a subtype of EDS that is caused by abnormalities in COL12A1. Up-to-date, 24 patients from 15 families with mEDS have been reported, with 14 families showing inheritance in an autosomal dominant manner and one family in an autosomal recessive manner. We encountered an additional patient with autosomal recessive mEDS. The patient is a 47-year-old Japanese man, born to consanguineous parents with no related features of mEDS. After birth, he presented with hypotonia, weak spontaneous movements, scoliosis, and torticollis. He had soft palms but no skin hyperextensibility or fragility. Progressive scoliosis, undescended testes, and muscular torticollis required surgery. During adulthood, he worked normally and had no physical concerns. Clinical exome analysis revealed a novel homozygous variant in COL12A1 (NM_004370.6:c.395-1G > A) at the splice acceptor site of exon 6, leading to in-frame skipping of exon 6. The patient was diagnosed with mEDS. The milder manifestations in the current patient compared with previously reported patients with mEDS might be related to the site of the variant. The variant is located in the genomic region encoding the first von Willebrand factor A domain, which affects only the long isoform of collagen XII, in contrast to the variants in previously reported mEDS patients that affected both the long and short isoforms. Further studies are needed to delineate comprehensive genotype–phenotype correlation of the disorder.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号