首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2282576篇
  免费   172168篇
  国内免费   3698篇
耳鼻咽喉   33585篇
儿科学   77852篇
妇产科学   65390篇
基础医学   329938篇
口腔科学   63420篇
临床医学   198771篇
内科学   448240篇
皮肤病学   49109篇
神经病学   178272篇
特种医学   90263篇
外国民族医学   973篇
外科学   351708篇
综合类   49142篇
现状与发展   1篇
一般理论   634篇
预防医学   171549篇
眼科学   52031篇
药学   172129篇
  3篇
中国医学   4415篇
肿瘤学   121017篇
  2018年   22517篇
  2016年   19001篇
  2015年   21631篇
  2014年   30059篇
  2013年   45983篇
  2012年   62961篇
  2011年   67077篇
  2010年   39924篇
  2009年   37878篇
  2008年   64512篇
  2007年   69545篇
  2006年   70212篇
  2005年   68579篇
  2004年   66634篇
  2003年   64461篇
  2002年   63378篇
  2001年   105909篇
  2000年   109388篇
  1999年   93125篇
  1998年   26241篇
  1997年   23556篇
  1996年   23958篇
  1995年   22697篇
  1994年   21502篇
  1993年   19928篇
  1992年   74577篇
  1991年   73277篇
  1990年   71901篇
  1989年   69166篇
  1988年   64165篇
  1987年   63033篇
  1986年   59422篇
  1985年   56950篇
  1984年   42785篇
  1983年   36487篇
  1982年   21613篇
  1981年   19394篇
  1980年   17783篇
  1979年   39405篇
  1978年   27555篇
  1977年   23682篇
  1976年   22304篇
  1975年   24295篇
  1974年   28572篇
  1973年   27511篇
  1972年   25827篇
  1971年   23767篇
  1970年   22309篇
  1969年   20897篇
  1968年   19412篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
81.
82.
83.
84.
BACKGROUND AND PURPOSE:Accurate and reliable detection of white matter hyperintensities and their volume quantification can provide valuable clinical information to assess neurologic disease progression. In this work, a stacked generalization ensemble of orthogonal 3D convolutional neural networks, StackGen-Net, is explored for improving automated detection of white matter hyperintensities in 3D T2-FLAIR images.MATERIALS AND METHODS:Individual convolutional neural networks in StackGen-Net were trained on 2.5D patches from orthogonal reformatting of 3D-FLAIR (n = 21) to yield white matter hyperintensity posteriors. A meta convolutional neural network was trained to learn the functional mapping from orthogonal white matter hyperintensity posteriors to the final white matter hyperintensity prediction. The impact of training data and architecture choices on white matter hyperintensity segmentation performance was systematically evaluated on a test cohort (n = 9). The segmentation performance of StackGen-Net was compared with state-of-the-art convolutional neural network techniques on an independent test cohort from the Alzheimer’s Disease Neuroimaging Initiative-3 (n = 20).RESULTS:StackGen-Net outperformed individual convolutional neural networks in the ensemble and their combination using averaging or majority voting. In a comparison with state-of-the-art white matter hyperintensity segmentation techniques, StackGen-Net achieved a significantly higher Dice score (0.76 [SD, 0.08], F1-lesion (0.74 [SD, 0.13]), and area under precision-recall curve (0.84 [SD, 0.09]), and the lowest absolute volume difference (13.3% [SD, 9.1%]). StackGen-Net performance in Dice scores (median = 0.74) did not significantly differ (P = .22) from interobserver (median = 0.73) variability between 2 experienced neuroradiologists. We found no significant difference (P = .15) in white matter hyperintensity lesion volumes from StackGen-Net predictions and ground truth annotations.CONCLUSIONS:A stacked generalization of convolutional neural networks, utilizing multiplanar lesion information using 2.5D spatial context, greatly improved the segmentation performance of StackGen-Net compared with traditional ensemble techniques and some state-of-the-art deep learning models for 3D-FLAIR.

White matter hyperintensities (WMHs) correspond to pathologic features of axonal degeneration, demyelination, and gliosis observed within cerebral white matter.1 Clinically, the extent of WMHs in the brain has been associated with cognitive impairment, Alzheimer’s disease and vascular dementia, and increased risk of stroke.2,3 The detection and quantification of WMH volumes to monitor lesion burden evolution and its correlation with clinical outcomes have been of interest in clinical research.4,5 Although the extent of WMHs can be visually scored,6 the categoric nature of such scoring systems makes quantitative evaluation of disease progression difficult. Manually segmenting WMHs is tedious, prone to inter- and intraobserver variability, and is, in most cases, impractical. Thus, there is an increased interest in developing fast, accurate, and reliable computer-aided automated techniques for WMH segmentation.Convolutional neural network (CNN)-based approaches have been successful in several semantic segmentation tasks in medical imaging.7 Recent works have proposed using deep learning–based methods for segmenting WMHs using 2D-FLAIR images.8-11 More recently, a WMH segmentation challenge12 was also organized (http://wmh.isi.uu.nl/) to facilitate comparison of automated segmentation of WMHs of presumed vascular origin in 2D multislice T2-FLAIR images. Architectures that used an ensemble of separately trained CNNs showed promising results in this challenge, with 3 of the top 5 winners using ensemble-based techniques.12Conventional 2D-FLAIR images are typically acquired with thick slices (3–4 mm) and possible slice gaps. Partial volume effects from a thick slice are likely to affect the detection of smaller lesions, both in-plane and out-of-plane. 3D-FLAIR images, with isotropic resolution, have been shown to achieve higher resolution and contrast-to-noise ratio13 and have shown promising results in MS lesion detection using 3D CNNs.14 Additionally, the isotropic resolution enables viewing and evaluation of the images in multiple planes. This multiplanar reformatting of 3D-FLAIR without the use of interpolating kernels is only possible due to the isotropic nature of the acquisition. Network architectures that use information from the 3 orthogonal views have been explored in recent works for CNN-based segmentation of 3D MR imaging data.15 The use of data from multiple planes allows more spatial context during training without the computational burden associated with full 3D training.16 The use of 3 orthogonal views simultaneously mirrors how humans approach this segmentation task.Ensembles of CNNs have been shown to average away the variances in the solution and the choice of model- and configuration-specific behaviors of CNNs.17 Traditionally, the solutions from these separately trained CNNs are combined by averaging or using a majority consensus. In this work, we propose the use of a stacked generalization framework (StackGen-Net) for combining multiplanar lesion information from 3D CNN ensembles to improve the detection of WMH lesions in 3D-FLAIR. A stacked generalization18 framework learns to combine solutions from individual CNNs in the ensemble. We systematically evaluated the performance of this framework and compared it with traditional ensemble techniques, such as averaging or majority voting, and state-of-the-art deep learning techniques.  相似文献   
85.
86.
87.
88.
89.
Advancement in microelectromechanical system has facilitated the microfabrication of polymeric substrates and the development of the novel class of controlled drug delivery devices. These vehicles have specifically tailored three dimensional physical and chemical features which together, provide the capacity to target cell, stimulate unidirectional controlled release of therapeutics and augment permeation across the barriers. Apart from drug delivery devices microfabrication technology’s offer exciting prospects to generate biomimetic gastrointestinal tract models. BioMEMS are capable of analysing biochemical liquid sample like solution of metabolites, macromolecules, proteins, nucleic acid, cells and viruses. This review summarized multidisciplinary application of biomedical microelectromechanical systems in drug delivery and its potential in analytical procedures.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号