首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3862篇
  免费   445篇
  国内免费   12篇
耳鼻咽喉   28篇
儿科学   113篇
妇产科学   86篇
基础医学   545篇
口腔科学   126篇
临床医学   527篇
内科学   876篇
皮肤病学   77篇
神经病学   398篇
特种医学   76篇
外科学   371篇
综合类   20篇
一般理论   1篇
预防医学   435篇
眼科学   88篇
药学   276篇
中国医学   4篇
肿瘤学   272篇
  2023年   50篇
  2022年   91篇
  2021年   144篇
  2020年   82篇
  2019年   117篇
  2018年   121篇
  2017年   129篇
  2016年   128篇
  2015年   145篇
  2014年   157篇
  2013年   215篇
  2012年   242篇
  2011年   242篇
  2010年   142篇
  2009年   151篇
  2008年   201篇
  2007年   202篇
  2006年   176篇
  2005年   169篇
  2004年   157篇
  2003年   138篇
  2002年   144篇
  2001年   67篇
  2000年   59篇
  1999年   79篇
  1998年   55篇
  1997年   47篇
  1996年   39篇
  1995年   62篇
  1994年   34篇
  1993年   23篇
  1992年   30篇
  1991年   40篇
  1990年   29篇
  1989年   27篇
  1988年   28篇
  1987年   22篇
  1986年   30篇
  1985年   20篇
  1984年   18篇
  1983年   15篇
  1982年   26篇
  1981年   14篇
  1980年   11篇
  1979年   24篇
  1978年   15篇
  1976年   13篇
  1975年   12篇
  1974年   12篇
  1972年   17篇
排序方式: 共有4319条查询结果,搜索用时 31 毫秒
101.

Background

Point of care ultrasound (POCUS) is a useful diagnostic tool in medicine. POCUS provides an easy and reproducible method of diagnosis where conventional radiologic studies are unavailable. Telemedicine is also a great means of communication between educators and students throughout the world.

Hypothesis

Implementing POCUS with didactics and hands-on training, using portable ultrasound devices followed by telecommunication training, will impact the differential diagnosis and patient management in a rural community outside the United States.

Materials and methods

This is an observational prospective study implementing POCUS in Las Salinas, a small village in rural western Nicaragua. Ultrasound was used to confirm a diagnosis based on clinical exam, or uncover a new, previously unknown diagnosis. The primary endpoint was a change in patient management. International sonographic instructors conducted didactic and practical training of local practitioners in POCUS, subsequently followed by remote guidance and telecommunication for 3 months.

Results

A total of 132 patients underwent ultrasound examination. The most common presentation was for a prenatal exam (23.5 %), followed by abdominal pain (17 %). Of the 132 patients, 69 (52 %) were found to have a new diagnosis. Excluding pregnancy, 67 patients of 101 (66 %) were found to have a new diagnosis. A change in management occurred in a total of 64 (48 %) patients, and 62 (61 %) after excluding pregnancy.

Conclusion

Implementing POCUS in rural Nicaragua led to a change in management in about half of the patients examined. With the appropriate training of clinicians, POCUS combined with telemedicine can positively impact patient care.  相似文献   
102.
  • Coronary stents are commonly deployed using high pressure. However, the duration time of balloon inflation during deployment is still to be determined.
  • Vallurupalli and coworkers, in this issue of CCI, show that the stent system takes an average of 33 sec to “accommodate” its pressure during in vitro deployment. In patients, the mean stent inflation time to achieve pressure stability was 104 seconds, ranging from 30 to 380 sec.
  • These results challenge a rapid inflation/deflation approach for stent deployment. It is suggested that the duration of the inflation might be individualized, in a case‐by‐case approach.
  • However, the findings must be interpreted with caution, as they cannot be directly extrapolated to more diverse clinical, angiographic, and interventional scenarios.
  相似文献   
103.
Activation of CD4+ T cells results in rapid proliferation and differentiation into effector and regulatory subsets. CD4+ effector T cell (Teff) (Th1 and Th17) and Treg subsets are metabolically distinct, yet the specific metabolic differences that modify T cell populations are uncertain. Here, we evaluated CD4+ T cell populations in murine models and determined that inflammatory Teffs maintain high expression of glycolytic genes and rely on high glycolytic rates, while Tregs are oxidative and require mitochondrial electron transport to proliferate, differentiate, and survive. Metabolic profiling revealed that pyruvate dehydrogenase (PDH) is a key bifurcation point between T cell glycolytic and oxidative metabolism. PDH function is inhibited by PDH kinases (PDHKs). PDHK1 was expressed in Th17 cells, but not Th1 cells, and at low levels in Tregs, and inhibition or knockdown of PDHK1 selectively suppressed Th17 cells and increased Tregs. This alteration in the CD4+ T cell populations was mediated in part through ROS, as N-acetyl cysteine (NAC) treatment restored Th17 cell generation. Moreover, inhibition of PDHK1 modulated immunity and protected animals against experimental autoimmune encephalomyelitis, decreasing Th17 cells and increasing Tregs. Together, these data show that CD4+ subsets utilize and require distinct metabolic programs that can be targeted to control specific T cell populations in autoimmune and inflammatory diseases.  相似文献   
104.
105.
106.
107.
108.
Nonalcoholic fatty liver disease (NAFLD) is a condition in which excess fat accumulates in the liver of a patient with no history of alcohol abuse or other causes for secondary hepatic steatosis. The pathogenesis of NAFLD and nonalcoholic steatohepatitis (NASH) has not been fully elucidated. The “two-hit“ hypothesis is probably a too simplified model to elaborate complex pathogenetic events occurring in patients with NASH. It should be better regarded as a multiple step process, with accumulation of liver fat being the first step, followed by the development of necroinflammation and fibrosis. Adipose tissue, which has emerged as an endocrine organ with a key role in energy homeostasis, is responsive to both central and peripheral metabolic signals and is itself capable of secreting a number of proteins. These adipocyte-specific or enriched proteins, termed adipokines, have been shown to have a variety of local, peripheral, and central effects. In the current review, we explore the role of adipocytokines and proinflammatory cytokines in the pathogenesis of NAFLD. We particularly focus on adiponectin, leptin and ghrelin, with a brief mention of resistin, visfatin and retinol-binding protein 4 among adipokines, and tumor necrosis factor-α, interleukin (IL)-6, IL-1, and briefly IL-18 among proinflammatory cytokines. We update their role in NAFLD, as elucidated in experimental models and clinical practice.  相似文献   
109.
Complexation of biomacromolecules (e.g., nucleic acids, proteins, or viruses) with surfactants containing flexible alkyl tails, followed by dehydration, is shown to be a simple generic method for the production of thermotropic liquid crystals. The anhydrous smectic phases that result exhibit biomacromolecular sublayers intercalated between aliphatic hydrocarbon sublayers at or near room temperature. Both this and low transition temperatures to other phases enable the study and application of thermotropic liquid crystal phase behavior without thermal degradation of the biomolecular components.Liquid crystals (LCs) play an important role in biology because their essential characteristic, the combination of order and mobility, is a basic requirement for self-organization and structure formation in living systems (13). Thus, it is not surprising that the study of LCs emerged as a scientific discipline in part from biology and from the study of myelin figures, lipids, and cell membranes (4). These and the LC phases formed from many other biomolecules, including nucleic acids (5, 6), proteins (7, 8), and viruses (9, 10), are classified as lyotropic, the general term applied to LC structures formed in water and stabilized by the distinctly biological theme of amphiphilic partitioning of hydrophilic and hydrophobic molecular components into separate domains. However, the principal thrust and achievement of the study of LCs has been in the science and application of thermotropic materials, structures, and phases in which molecules that are only weakly amphiphilic exhibit LC ordering by virtue of their steric molecular shape, flexibility, and/or weak intermolecular interactions [e.g., van der Waals and dipolar forces (11)]. These characteristics enable thermotropic LCs (TLCs) to adopt a wide variety of exotic phases and to exhibit dramatic and useful responses to external forces, including, for example, the electro-optic effects that have led to LC displays and the portable computing revolution. This general distinction between lyotropic LCs and TLCs suggests there may be interesting possibilities in the development of biomolecular or bioinspired LC systems in which the importance of amphiphilicity is reduced and the LC phases obtained are more thermotropic in nature. Such biological TLC materials are very appealing for several reasons. Most biomacromolecules were extensively characterized in aqueous environments, but in TLC phases, their solvent-free properties and functions could be investigated in a state in which no or only traces of water are present. Water exhibits a high dielectric constant and has the ability to form hydrogen bonds, greatly influencing the structure and functions of biomacromolecules or compromising electronic properties such as charge transport (1215). Indeed, anhydrous TLC systems containing glycolipids (1619), ferritin (20), and polylysine have been reported (2123). However, a general approach to fabricating TLCs based on nucleic acids, polypeptides, proteins, and protein assemblies of large molecular weights such as virus particles remains elusive.Here we propose that the combination of biomaterials with suitably chosen surfactants, followed by dehydration, can be effectively applied as a simple generic scheme for producing biomacromolecular-based TLCs. We demonstrate that biological TLCs can be made from a remarkable range of biomolecules and bio-inspired molecules, including nucleic acids, polypeptides, fusion proteins, and viruses. TLC materials typically combine rigid or semirigid anisometric units, which introduce orientational anisotropy, with flexible alkyl chains, which suppress crystallization (24). In the present experiments, negatively charged biomolecules and bio-inspired molecules act as rigid parts, and cationic surfactants make up the flexible units to produce TLC phases with remarkably low LC-isotropic clearing temperatures, which is another TLC signature. Electrostatic interactions couple these rigid and flexible components into hybrid assemblies, which then order into lamellar phases of alternating rigid and flexible layers (Fig. 1) stabilized by the tendency in TLCs for rigid and flexible to spatially segregate (25).Open in a separate windowFig. 1.Proposed structures of TLCs formed by the biological building blocks complexed with surfactants, showing sketches of various lamellar phases and the corresponding phase transition temperatures (°C). The lamellar bilayer structures are made of, alternately, a sublayer of the biomacromolecules and an interdigitated sublayer of the surfactants, where the negatively charged parts of the biomolecules (e.g., phosphate groups of ssDNA and ssRNA, glutamate residues of supercharged ELPs, and N-terminal glutamate and aspartate residues of pVIII protein in phages) electrostatically interact with the cationic head groups of the surfactants. For the ssDNA–DOAB and ssRNA–DOAB smectic TLCs, the oligonucleotides are randomly orientated in the DNA (RNA) sublayers. For the ELP–DDAB complexes, in addition to the bilayer smectic phase, a modulated smectic (Smmod) phase is observed at lower temperature. For the phage–DOAB–DDAB lamellar structures, rodlike virus particles are embedded in a sublayer between interdigitated surfactants with additional in-plane orientational order.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号