首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   198篇
  免费   19篇
耳鼻咽喉   11篇
儿科学   7篇
妇产科学   5篇
基础医学   34篇
口腔科学   1篇
临床医学   21篇
内科学   55篇
皮肤病学   5篇
神经病学   26篇
特种医学   3篇
外科学   16篇
综合类   1篇
预防医学   19篇
眼科学   3篇
药学   6篇
肿瘤学   4篇
  2023年   1篇
  2022年   9篇
  2021年   19篇
  2020年   10篇
  2019年   10篇
  2018年   15篇
  2017年   16篇
  2016年   14篇
  2015年   5篇
  2014年   17篇
  2013年   7篇
  2012年   17篇
  2011年   17篇
  2010年   4篇
  2009年   6篇
  2008年   8篇
  2007年   5篇
  2006年   7篇
  2005年   12篇
  2004年   5篇
  2003年   4篇
  2002年   1篇
  2001年   1篇
  1998年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1981年   1篇
  1977年   1篇
  1974年   1篇
排序方式: 共有217条查询结果,搜索用时 0 毫秒
211.
Evolution of apoptosis resistance in both lymphoma and leukemia cells is well documented, and induction of apoptosis in malignant cells is a major goal of cancer therapy. Up-regulation of anti-apoptotic signals is one of the mechanisms whereby resistance to apoptosis emerges. We have previously described the fusion proteins CD40·FasL and CTLA-4·FasL, which are formed from two functional membrane proteins and induce apoptosis of activated T cells. The present study explores the potential use of CD40·FasL and CTLA-4·FasL for the killing of malignant cells of lymphatic origin. Using malignant B and T cell lines that differ in surface expression of costimulatory molecules, we found that CTLA-4·FasL induces effective apoptosis of cells expressing CD95 and activates caspases 3, 8, and 9. Only B7-expressing B cells responded to CTLA-4·FasL with rapid abrogation of cFLIP expression. CD40·FasL effectively killed only the T cells that express high levels of CD40L in addition to CD95. In these cells, CD40·FasL significantly diminished cFLIP expression. Importantly, each of the fusion proteins is more potent than its respective components parts, alone or in combination. Thus, the proteins with their two functional ends deliver a pro-apoptotic signal and, in parallel, inhibit an anti-apoptotic signal, thus optimizing the wanted, death-inducing effect. Therefore, these proteins emerge as promising agents to be used for targeted and specific tumor cell killing.  相似文献   
212.
213.
Malignant peripheral nerve sheath tumors (MPNST) are chemoresistant sarcomas with poor 5-year survival that arise in patients with neurofibromatosis type 1 (NF1) or sporadically. We tested three drugs for single and combinatorial effects on collected MPNST cell lines and in MPNST xenografts. The mammalian target of rapamycin complex 1 inhibitor RAD001 (Everolimus) decreased growth 19% to 60% after 4 days of treatment in NF1 and sporadic-derived MPNST cell lines. Treatment of subcutaneous sporadic MPNST cell xenografts with RAD001 significantly, but transiently, delayed tumor growth, and decreased vessel permeability within xenografts. RAD001 combined with the epidermal growth factor receptor tyrosine kinase inhibitor erlotinib caused additional inhibitory effects on growth and apoptosis in vitro, and a small but significant additional inhibitory effect on MPNST growth in vivo that were larger than the effects of RAD001 with doxorubicin. RAD001 plus erlotinib, in vitro and in vivo, reduced phosphorylation of AKT and total AKT levels, possibly accounting for their additive effect. The results support the consideration of RAD001 therapy in NF1 patient and sporadic MPNST. The preclinical tests described allow rapid screening strata for drugs that block MPNST growth, prior to tests in more complex models, and should be useful to identify drugs that synergize with RAD001.  相似文献   
214.
Melatonin, the hormone produced nocturnally by the pineal gland, is an endogenous regulator of the sleep-wake cycle. The effects of melatonin on brain activities and their relation to induction of sleepiness were studied in a randomized, double-blind, placebo controlled functional magnetic resonance imaging (fMRI) study. Melatonin, but not placebo, reduced task-related activity in the rostro-medial aspect of the occipital cortex during a visual-search task and in the auditory cortex during a music task. These effects correlated with subjective measurements of fatigue. In addition, melatonin enhanced the activation in the left parahippocampus in an autobiographic memory task. Results demonstrate that melatonin modulates brain activity in a manner resembling actual sleep although subjects are fully awake. Furthermore, the fatigue inducing effect of melatonin on brain activity is essentially different from that of sleep deprivation thus revealing differences between fatigues related to the circadian sleep regulation as opposed to increased homeostatic sleep need. Our findings highlight the role of melatonin in priming sleep-associated brain activation patterns in anticipation of sleep.  相似文献   
215.
Congenital hypothyroidism (CH) due to dyshormonogenesis may occur due to mutations in any of the key genes involved in thyroid hormone biosynthesis (TG, TPO, DUOX2, DUOXA2, SLC5A5, IYD, SLC26A4 and SLC26A7). Mutations in the thyroglobulin gene (TG) are frequently associated with goiter, which may present fetally or neonatally, although a spectrum of phenotypes is reported. We present the case of a woman of Eritrean origin who presented in the third trimester of pregnancy in the early stages of labor. Ultrasound at presentation revealed a fetal neck swelling consistent with a goiter. Following delivery by Caesarian section with minimal respiratory support, the infant was found to be hypothyroid with undetectable serum levels of thyroglobulin. Sequencing of the TG revealed a homozygous donor splice site pathogenic variant (c.5686+1delG) not previously described in the literature. Levothyroxine treatment resulted in normal growth and psychomotor development. Goitrous CH with inappropriately low thyroglobulin has previously been reported in patients harbouring homozygous single nucleotide substitutions at the same TG donor splice site, which result in exon skipping and retention of malformed thyroglobulin by the endoplasmic reticulum. We conclude that the TG c.5686+1delG pathogenic variant is the likely basis for our patient’s fetal goiter and CH, and that the clinical phenotype associated with TG c.5686+1delG is comparable to that seen with single nucleotide substitutions at the same site.  相似文献   
216.
How the brain represents gender identity is largely unknown, but some neural differences have recently been discovered. We used an intrinsic ignition framework to investigate whether there are gender differences in the propagation of neural activity across the whole‐brain and within resting‐state networks. Studying 29 trans men and 17 trans women with gender incongruence, 22 cis women, and 19 cis men, we computed the capability of a given brain area in space to propagate activity to other areas (mean‐ignition), and the variability across time for each brain area (node‐metastability). We found that both measurements differentiated all groups across the whole brain. At the network level, we found that compared to the other groups, cis men showed higher mean‐ignition of the dorsal attention network and node‐metastability of the dorsal and ventral attention, executive control, and temporal parietal networks. We also found higher mean‐ignition values in cis men than in cis women within the executive control network, but higher mean‐ignition in cis women than cis men and trans men for the default mode. Node‐metastability was higher in cis men than cis women in the somatomotor network, while both mean‐ignition and node‐metastability were higher for cis men than trans men in the limbic network. Finally, we computed correlations between these measurements and a body image satisfaction score. Trans men''s dissatisfaction as well as cis men''s and cis women''s satisfaction toward their own body image were distinctively associated with specific networks in each group. Overall, the study of the whole‐brain network dynamical complexity discriminates gender identity groups, functional dynamic approaches could help disentangle the complex nature of the gender dimension in the brain.  相似文献   
217.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号