首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   4篇
儿科学   1篇
妇产科学   1篇
基础医学   10篇
临床医学   6篇
内科学   61篇
皮肤病学   1篇
外科学   9篇
预防医学   7篇
药学   9篇
  2021年   3篇
  2020年   1篇
  2018年   5篇
  2016年   2篇
  2015年   2篇
  2014年   3篇
  2013年   9篇
  2012年   11篇
  2011年   12篇
  2010年   4篇
  2009年   6篇
  2008年   4篇
  2007年   7篇
  2006年   5篇
  2005年   4篇
  2004年   8篇
  2003年   4篇
  2002年   4篇
  2001年   5篇
  2000年   4篇
  1989年   1篇
  1988年   1篇
排序方式: 共有105条查询结果,搜索用时 213 毫秒
81.
Heart failure remains a leading cause of mortality in the Western world. An important hallmark of heart failure is reduced myocardial contractility. Alterations in intracellular Ca2+ handling play a major role in the pathophysiology of these contractile abnormalities. Several defects in the excitation-contraction (EC) coupling system have been identified in patients with heart failure. Alterations in the density and function of proteins relevant for EC coupling have been reported. Chronic stimulation of the beta-adrenergic signaling pathway leads to protein kinase A (PKA) hyperphosphorylation of the cardiac ryanodine receptor (RyR2), which dissociates FKBP12.6 from RyR2, thereby altering channel gating and promoting diastolic sarcoplasmic reticulum (SR) Ca2+ release. This may deplete the SR Ca2+ stores, which may reduce myocardial contractility. Clinical studies have demonstrated that beta-adrenergic receptor blockers reduce morbidity and mortality in all grades of congestive heart failure. Our experimental data indicate that beta-blockers reverse RyR2 hyperphosphorylation and normalize channel gating, which is associated with increased contractility in heart failure. In conclusion, chronic hyperactivity of the beta-adrenergic signaling pathway impairs intracellular Ca2+ handling, which leads to reduced contractility in patients with heart failure.  相似文献   
82.
83.
Helicobacter pylori infection remains a significant global public health problem. Vaccine development against this infection appears to be feasible but has not yet delivered its promise in clinical trials. Efforts to improve current vaccination strategies would greatly benefit from a better molecular understanding of the mechanism of protection. Here, we review recent developments in this field.  相似文献   
84.
Atrial fibrillation (AF), the most common human cardiac arrhythmia, is associated with abnormal intracellular Ca2+ handling. Diastolic Ca2+ release from the sarcoplasmic reticulum via “leaky” ryanodine receptors (RyR2s) is hypothesized to contribute to arrhythmogenesis in AF, but the molecular mechanisms are incompletely understood. Here, we have shown that mice with a genetic gain-of-function defect in Ryr2 (which we termed Ryr2R176Q/+ mice) did not exhibit spontaneous AF but that rapid atrial pacing unmasked an increased vulnerability to AF in these mice compared with wild-type mice. Rapid atrial pacing resulted in increased Ca2+/calmodulin-dependent protein kinase II (CaMKII) phosphorylation of RyR2, while both pharmacologic and genetic inhibition of CaMKII prevented AF inducibility in Ryr2R176Q/+ mice. This result suggests that AF requires both an arrhythmogenic substrate (e.g., RyR2 mutation) and enhanced CaMKII activity. Increased CaMKII phosphorylation of RyR2 was observed in atrial biopsies from mice with atrial enlargement and spontaneous AF, goats with lone AF, and patients with chronic AF. Genetic inhibition of CaMKII phosphorylation of RyR2 in Ryr2S2814A knockin mice reduced AF inducibility in a vagotonic AF model. Together, these findings suggest that increased RyR2-dependent Ca2+ leakage due to enhanced CaMKII activity is an important downstream effect of CaMKII in individuals susceptible to AF induction.  相似文献   
85.
86.
87.
88.
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号