首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1599篇
  免费   96篇
  国内免费   2篇
耳鼻咽喉   60篇
儿科学   57篇
妇产科学   12篇
基础医学   327篇
口腔科学   19篇
临床医学   152篇
内科学   352篇
皮肤病学   54篇
神经病学   135篇
特种医学   100篇
外国民族医学   1篇
外科学   133篇
综合类   6篇
预防医学   121篇
眼科学   5篇
药学   106篇
中国医学   1篇
肿瘤学   56篇
  2023年   12篇
  2022年   11篇
  2021年   32篇
  2020年   15篇
  2019年   24篇
  2018年   28篇
  2017年   25篇
  2016年   35篇
  2015年   36篇
  2014年   49篇
  2013年   47篇
  2012年   93篇
  2011年   93篇
  2010年   54篇
  2009年   49篇
  2008年   71篇
  2007年   87篇
  2006年   63篇
  2005年   64篇
  2004年   59篇
  2003年   49篇
  2002年   37篇
  2001年   39篇
  2000年   45篇
  1999年   36篇
  1998年   20篇
  1997年   21篇
  1996年   21篇
  1995年   13篇
  1994年   8篇
  1992年   32篇
  1991年   31篇
  1990年   20篇
  1989年   31篇
  1988年   25篇
  1987年   33篇
  1986年   26篇
  1985年   13篇
  1984年   16篇
  1981年   9篇
  1979年   9篇
  1977年   11篇
  1976年   9篇
  1975年   12篇
  1974年   13篇
  1973年   12篇
  1972年   7篇
  1968年   9篇
  1967年   8篇
  1931年   7篇
排序方式: 共有1697条查询结果,搜索用时 12 毫秒
11.
12.
13.
14.
15.
16.
17.
18.
19.
OBJECTIVE—Increased availability of fatty acids is important for accumulation of intracellular lipids and development of insulin resistance in human myotubes. It is unknown whether different types of fatty acids like eicosapentaenoic acid (EPA) or tetradecylthioacetic acid (TTA) influence these processes.RESEARCH DESIGN AND METHODS—We examined fatty acid and glucose metabolism and gene expression in cultured human skeletal muscle cells from control and type 2 diabetic individuals after 4 days of preincubation with EPA or TTA.RESULTS—Type 2 diabetes myotubes exhibited reduced formation of CO2 from palmitic acid (PA), whereas release of β-oxidation products was unchanged at baseline but significantly increased with respect to control myotubes after preincubation with TTA and EPA. Preincubation with TTA enhanced both complete (CO2) and β-oxidation of palmitic acid, whereas EPA increased only β-oxidation significantly. EPA markedly enhanced triacylglycerol (TAG) accumulation in myotubes, more pronounced in type 2 diabetes cells. TAG accumulation and fatty acid oxidation were inversely correlated only after EPA preincubation, and total level of acyl-CoA was reduced. Glucose oxidation (CO2 formation) was enhanced and lactate production decreased after chronic exposure to EPA and TTA, whereas glucose uptake and storage were unchanged. EPA and especially TTA increased the expression of genes involved in fatty acid uptake, activation, accumulation, and oxidation.CONCLUSIONS—Our results suggest that 1) mitochondrial dysfunction in diabetic myotubes is caused by disturbances downstream of fatty acid β-oxidation; 2) EPA promoted accumulation of TAG, enhanced β-oxidation, and increased glucose oxidation; and 3) TTA improved complete palmitic acid oxidation in diabetic myotubes, opposed increased lipid accumulation, and increased glucose oxidation.Type 2 diabetes is characterized by hyperglycemia, reduced ability to oxidize fat, and accumulation of triacylglycerol (TAG) in skeletal muscle fibers. The increased deposition of intramyocellular TAG (imTAG) has received special interest, because several studies have demonstrated a positive association between insulin resistance and imTAG storage (1,2). Accumulation of imTAG depends on the availability and uptake of fatty acids, the rate of fatty acid oxidation, and the rate of synthesis and hydrolysis of TAG. Increased availability of plasma free fatty acid (FFA) during lipid infusion or high-fat feeding is associated with development of insulin resistance and accumulation of imTAG in vivo (3). Moreover, studies have shown impaired capacity for fatty acid oxidation in skeletal muscle from insulin-resistant/type 2 diabetic individuals (4,5), and reduced mitochondrial fatty acid oxidation in skeletal muscle and myotubes is associated with increased deposition of imTAG (68). Fatty acids may promote insulin resistance via intracellular intermediates such as acyl-CoA, diacylglycerol (DAG), and ceramides, interfering with insulin signaling and glucose metabolism (9).Previous studies have demonstrated positive effects on skeletal muscle insulin sensitivity of mono- and polyunsaturated fatty acids (PUFAs) compared with saturated fatty acids (1012). Very long–chain ω-3 fatty acids, including eicosapentaenoic acid (EPA), may protect against skeletal muscle insulin resistance caused by high-fat feeding in vivo (1,13). PUFAs may also promote increased TAG accumulation without impairing insulin-stimulated glucose uptake in myotubes (10,11). The sulfur-substituted fatty acid analog tetradecylthioacetic acid (TTA) is a pan–peroxisome proliferator–activated receptor (pan-PPAR) activator that reduces plasma lipids and enhances hepatic fatty acid oxidation in rodents (14). Dual and pan-PPAR agonists are currently being developed for treatment of type 2 diabetes (15), and TTA has been shown to improve glucose metabolism in insulin-resistant rats (16) and to stimulate mitochondrial proliferation in rat skeletal muscle (17). We have recently demonstrated that TTA may increase fatty acid oxidation in human myotubes similar to the PPARδ-specific agonist GW501516 (18).Skeletal muscle metabolism is influenced by physical activity, hormonal status, and muscle fiber type, rendering it difficult to determine the impact of EPA and TTA on basal and insulin-stimulated intermediary metabolism. Cultured human myotubes display the morphological, metabolic, and biochemical properties of adult skeletal muscle (19) and offer a unique model to distinguish between genetic and environmental factors in the etiology of insulin resistance (20). We and others have reported several potential intrinsic deficiencies in myotubes from individuals with type 2 diabetes, including lower basal palmitate oxidation (21) and impaired insulin-stimulated glucose metabolism (20,22). It is unknown whether EPA or TTA may improve insulin resistance or other characteristics of type 2 diabetes, such as decreased lipid oxidation in myotubes.To identify the potential effects of EPA and TTA on the intermediary energy metabolism and insulin resistance, we compared the effect of TTA, EPA, and oleic acid in myotubes established from obese individuals with type 2 diabetes and obese healthy subjects.  相似文献   
20.
Clostridium difficile toxins A and B (TcdA and TcdB) are the causative agents of antibiotic-associated pseudomembranous colitis. Mucosal mast cells play a crucial role in the inflammatory processes underlying this disease. We studied the direct effects of TcdA and TcdB on the human mast cell line HMC-1 with respect to degranulation, cytokine release, and the activation of proinflammatory signal pathways. TcdA and TcdB inactivate Rho GTPases, the master regulators of the actin cytoskeleton. The inactivation of Rho GTPases induced a reorganization of the actin cytoskeleton accompanied by morphological changes of cells. The TcdB-induced reorganization of the actin cytoskeleton in HMC-1 cells reduced the number of electron-dense mast cell-specific granules. Accordingly, TcdB induced the release of hexosaminidase, a marker for degranulation, in HMC-1 cells. The actin rearrangement was found to be responsible for degranulation since latrunculin B induced a comparable hexosaminidase release. In addition, TcdB as well as latrunculin B induced the activation of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase 1/2 and also resulted in a p38 MAPK-dependent increased formation of prostaglandins D(2) and E(2). The autocrine stimulation of HMC-1 cells by prostaglandins partially contributed to the degranulation. Interestingly, TcdB-treated HMC-1 cells, but not latrunculin B-treated HMC-1 cells, showed a strong p38 MAPK-dependent increase in interleukin-8 release. Differences in the mast cell responses to TcdB and latrunculin B are probably due to the presence of functionally inactive Rho GTPases in toxin-treated cells. Thus, the HMC-1 cell line is a promising model for studying the direct effects of C. difficile toxins on mast cells independently of the tissue context.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号