SARS-CoV-2 infection leads to high viral loads in the upper respiratory tract that may be determinant in virus dissemination. The extent of intranasal antiviral response in relation to symptoms is unknown. Understanding how local innate responses control virus is key in the development of therapeutic approaches.
Methods
SARS-CoV-2-infected patients were enrolled in an observational study conducted at the Geneva University Hospitals, Switzerland, investigating virological and immunological characteristics. Nasal wash and serum specimens from a subset of patients were collected to measure viral load, IgA specific for the S1 domain of the spike protein, and a cytokine panel at different time points after infection; cytokine levels were analyzed in relation to symptoms.
Results
Samples from 13 SARS-CoV-2-infected patients and six controls were analyzed. We found an increase in CXCL10 and IL-6, whose levels remained elevated for up to 3 weeks after symptom onset. SARS-CoV-2 infection also induced CCL2 and GM-CSF, suggesting local recruitment and activation of myeloid cells. Local cytokine levels correlated with viral load but not with serum cytokine levels, nor with specific symptoms, including anosmia. Some patients had S1-specific IgA in the nasal cavity while almost none had IgG.
Conclusion
The nasal epithelium is an active site of cytokine response against SARS-CoV-2 that can last more than 2 weeks; in this mild COVID-19 cohort, anosmia was not associated with increases in any locally produced cytokines.
This article presents the annealing effect on the structural, elastic, thermodynamic, optical, magnetic, and electric properties of Ni0.6Zn0.4Fe1.5Al0.5O4 (NZFAO) nanoparticles (NPs). The samples were successfully synthesized by the sol–gel method followed by annealing of the as-synthesized at 600, 800, 900, 1050, and 1200 °C. This approach yielded the formation of a highly crystalline structure with crystallite size ranging from 17 nm to 40 nm. X-ray diffraction (XRD), scanning electron microscopy (SEM) techniques, as well as energy disperse spectroscopy (EDS), Fourier transform infrared (FTIR) and Raman spectroscopy, were used in order to determine the structural and morphological properties of the prepared samples. Rietveld XRD refinement reveals that Ni–Zn–Al ferrite nanoparticles crystallize in inverse cubic (Fdm) spinel structure. Using FTIR spectra, the elastic and thermodynamic properties were estimated. It was observed that the particle size had a pronounced effect on elastic and thermodynamic properties. Magnetic measurements were performed up to 700 K. The prepared ferrite samples present the highest Curie temperature, which decreases with increasing particle size and which is consistent with finite-size scaling. The thickness of the surface shell of about 1 nm was estimated from size-dependent magnetization measurements using the core–shell model. Besides, spin resonance, magnetostriction, temperature coefficient of resistance (TCR), and electrical resistivity properties have been scientifically studied and appear to be different according to their size. The optical properties of synthesized NZFAO nanoparticles were investigated, and the differences caused by the particle sizes are discussed on the basis of the phonon confinement effect. This effect was also inspected by the Raman analysis. Tuning of the physical properties suggests that the Ni–Zn–Al ferrite samples may be promising for multifunctional diverse applications.This article presents the annealing effect on the structural, elastic, thermodynamic, optical, magnetic, and electric properties of Ni0.6Zn0.4Fe1.5Al0.5O4 (NZFAO) nanoparticles (NPs).相似文献
The capacity of blood group antibodies to agglutinate red cells suspended in saline is largely dependent on the antibody isotype. The immunological cross-linking of IgG antibodies has previously been described as a means to increase the reactivity of IgG in many situations. We have prepared anti-D-containing complexes by blending a human IgG anti-D monoclonal antibody (mAb) and a murine anti-human IgG mAb. In standard red cell serology assays, the anti-D complexes exhibited a very high avidity and could agglutinate weak D-positive red cells in direct saline testing. These results indicate that potent saline hemagglutinating reagents of RhD and eventually of other blood group specificities can be prepared from IgG mAbs. 相似文献
Cerebral hemispheres represent both structural and functional asymmetry, which differs among right- and left-handers. The left hemisphere is specialised for language and task execution of the right hand in right-handers. We studied the corticospinal tract in right- and left-handers by diffusion tensor imaging and tractography. The present study aimed at revealing a morphological difference resulting from a region of interest (ROI) obtained by functional MRI (fMRI).
Methods
Twenty-five healthy participants (right-handed: 15, left-handed: 10) were enrolled in our assessment of morphological, functional and diffusion tensor MRI. Assessment of brain fibre reconstruction (tractography) was done using a deterministic algorithm. Fractional anisotropy (FA) and mean diffusivity (MD) were studied on the tractography traces of the reference slices.
Results
We observed a significant difference in number of leftward fibres based on laterality. The significant difference in regard to FA and MD was based on the slices obtained at different levels and the laterality index. We found left-hand asymmetry and right-hand asymmetry, respectively, for the MD and FA.
Conclusions
Our study showed the presence of hemispheric asymmetry based on laterality index in right- and left-handers. These results are inconsistent with some studies and consistent with others. The reported difference in hemispheric asymmetry could be related to dexterity (manual skill). 相似文献