Thromboxane A2 (TXA2) formed in damaged brain tissue and after thromboembolism and subarachnoid haemorrhage is responsible for cerebral vasospasm.
In the present study, we examined the effect of human cerebrospinal fluid (CSF) on the production of thromboxane-A2 (TXA2) and 12-hydroxy-eicosatetraenoic acid (12-HETE) by human blood platelets. CSF was drawn by lumbar puncture from normal healthy
volunteers (n = 17) and samples judged to be normal after routine examination in the clinical laboratories and were used fresh. We found
that CSF inhibited the production of TXA2 and 12-HETE by blood platelets incubated with C14 labelled arachidonic acid (AA) in a concentration-related manner. Further biochemical analysis using proteolytic enzymes,
gel filtration and membrane partition chromatography showed that the inhibitory activity was peptidic in nature and associated
with a peptide of low molecular weight (1,400 Da). This study is the first to demonstrate that human CSF contains a dual inhibitor
of cyclooxygenase (COX) and lipoxygenase enzymes in CSF. 相似文献
BACKGROUND: Immunoglobulins undergo non-enzymatic glycation reaction with sugars both in vivo and in vitro. Effects of glycation on the ability of the antibodies to bind antigens are contradictory. Antibodies raised in various animals may also be exposed to high concentration of sugars that are added during freeze-drying/pasteurization for preservation. METHODS: IgG isolated from the sera of goat, human, rabbit, mouse, buffalo as well as IgY from hen egg yolk was subjected to in vitro glycation with fructose. The behavior of glycated IgG was investigated by SDS-PAGE, hyperchromicity at 280 nm, tryptophan fluorescence and new fluorescence. RESULTS: Marked variations were observed in the response of the immunoglobulins derived from various animals to incubation with fructose. Also, incubation of anti-glucoseoxidase (GOD) antibodies with fructose resulted in a rapid loss of their ability to bind the enzyme antigen as revealed by immunodiffusion and ELISA. DETAPAC and EDTA were quite protective but were unable to completely prevent the fructose-induced alterations. CONCLUSIONS: Immunoglobulins derived from goat, human, rabbit, mouse, buffalo and hen egg yolk undergo remarkable structural alterations on incubation with fructose. The susceptibility of the immunoglobulins to the modification however differed remarkably. The goat IgG was most recalcitrant while hen egg yolk IgY was most susceptible to the alterations. DETAPAC or EDTA restricted the fructose-induced alterations remarkably. 相似文献
Context: Traditionally, the content of total phenolics (flavonoid phenolics (FP) and non-flavonoid phenolics (NFP)) and flavonoids (flavone/flavonol and flavonone/dihydroflavonol) in propolis has been determined by different methodologies. Until now, the percentage of total phenolic (TP) compounds that corresponds to FP and NFP, expressed in the same units by a spectrophotometric method, has not been determined.
Objective: The current study proposes a quick and simple methodology that separates FP and NFP in propolis samples and determines TP, FP, and NFP by the same method.
Materials and methods: Propolis samples from five Argentine provinces (Tucumán, Santiago del Estero, Salta, Misiones, and Jujuy) were used. Extraction of TP from the propolis samples was carried out by maceration with 80% ethanol and quantified by Folin–Ciocalteu reagent (FC-R). Then, FP was precipitated with formaldehyde in acid medium. After centrifugation, NFP were determined in the supernatant using FC-R. FP content was calculated as the difference between the content of TP and NFP. The method was also validated using commercial flavonoids and chalcones.
Results: FP recovery in all experiments was between 85.95% and 98.29%. Propolis from Tucumán had significantly higher amounts of total phenols than propolis from other provinces. SE5 showed higher content of FP (81.52%) followed by SA1 (74.75%). The propolis from TUC4, SA4, SE3, and MI showed the lowest FP content and highest content of NFP.
Conclusions: This method provides a simple, reliable, and specific spectrophotometric assay to estimate the content of NFP, FP, and TP in propolis samples. 相似文献
New methods of degradations on the pavement’s surface, such as top-down cracking and delamination, caused by the repeated passage of heavy vehicles led to questions about the impact of the contact between the tire and the pavement. In fact, to increase the service life of the structures, future road design methods must have a precise knowledge of the consequences of the contact parameters on the state of stress and deformation in the pavement. In this paper, tractive rolling contact under the effect of friction is modeled by Kalker’s theory using a semi-analytical method (SAM). A tire profile is performed thanks to a digitization by fringes or a photogrammetry technique. The effect of rolling on the main surface extension deformations is then highlighted to study top cracking. At the end of the SAM calculation, contact areas are closed to 200 μdef, exceeding the allowable micro-deformation limit for the initiation of cracking. In addition, results on the main strain directions also give information on the direction of cracking (initiation of longitudinal or transverse cracks). The cracking then becomes evident, leading to a reduced service life. 相似文献
SARS-CoV-2 (Severe Acute Respiratory Syndrome-Coronavirus 2) has accumulated multiple mutations during its global circulation. Recently, three SARS-CoV-2 lineages, B.1.1.7 (501Y.V1), B.1.351 (501Y.V2) and B.1.1.28.1 (P.1), have emerged in the United Kingdom, South Africa and Brazil, respectively. Here, we have presented global viewpoint on implications of emerging SARS-CoV-2 variants based on structural–function impact of crucial mutations occurring in its spike (S), ORF8 and nucleocapsid (N) proteins. While the N501Y mutation was observed in all three lineages, the 501Y.V1 and P.1 accumulated a different set of mutations in the S protein. The missense mutational effects were predicted through a COVID-19 dedicated resource followed by atomistic molecular dynamics simulations. Current findings indicate that some mutations in the S protein might lead to higher affinity with host receptors and resistance against antibodies, but not all are due to different antibody binding (epitope) regions. Mutations may, however, result in diagnostic tests failures and possible interference with binding of newly identified anti-viral candidates against SARS-CoV-2, likely necessitating roll out of recurring “flu-like shots” annually for tackling COVID-19. The functional relevance of these mutations has been described in terms of modulation of host tropism, antibody resistance, diagnostic sensitivity and therapeutic candidates. Besides global economic losses, post-vaccine reinfections with emerging variants can have significant clinical, therapeutic and public health impacts. 相似文献
The TNM Classification of Malignant Tumours (TNM) staging system is the primary means of determining a prognosis for gastric adenocarcinoma (GC). However, tumor behavior in the individual patient is unpredictable and in spite of treatment advances, a classification of 'advanced stage' still portends a poor prognosis. Thus, further insights from molecular analyses are needed for better prognostic stratification and determination of new therapeutic targets.
Methods
A total of fifty-one fresh frozen tumor samples from patients with histopathologically confirmed diagnoses of GC, submitted to surgery with curative intent, were included in the study. Total RNA was extracted from an initial group of fifteen samples matched for known prognostic factors, categorized into two subgroups, according to patient overall survival: poor (<24 months) or favorable (at or above 24 months), and hybridized to Affymetrix Genechip human genome U133 plus 2.0 for genes associated with prognosis selection. Thirteen genes were selected for qPCR validation using those initial fifteen samples plus additional thirty-six samples.
Results
A total of 108 genes were associated with poor prognosis, independent of tumor staging. Using systems biology, we suggest that this panel reflects the dampening of immune/inflammatory response in the tumor microenvironment level and a shift to Th2/M2 activity. A gene trio (OLR1, CXCL11 and ADAMDEC1) was identified as an independent marker of prognosis, being the last two markers validated in an independent patient cohort.
Conclusions
We determined a panel of three genes with prognostic value in gastric cancer, which should be further investigated. A gene expression profile suggestive of a dysfunctional inflammatory response was associated with unfavorable prognosis. 相似文献
Journal of Thrombosis and Thrombolysis - The purpose of the currents study was to enhance bioavailability of rivaroxaban (RXB) and reduce the food effect. RXB loaded PLGA nanoparticles... 相似文献
The inflammatory response caused by scorpion venoms is a key event in the pathogenesis of scorpion envenomation. This response was assessed in the cardiac, pulmonary, and gastric tissues of envenomed mice. The results reveal an increase of permeability in cardiac, pulmonary, and gastric vessels accompanied by an edema-forming, inflammatory cell infiltration, and imbalanced redox status. These effects are correlated with severe tissue alterations and concomitant increase of metabolic enzymes in sera. Pretreatment of mice with antagonists of H1, H2, or H4 receptors markedly alleviated these alterations in the heart and lungs. Nevertheless, the blockade of the H3 receptor slightly reduced these disorders. Histamine H2 and H4 receptors were the most pharmacological targets involved in the gastric oxidative inflammation. These findings could help to better understand the role of histamine in scorpion venom-induced inflammatory response and propose new therapy using as targets the H4 receptor in addition to histamine H1 and H2 receptors to attenuate the induced inflammatory disorders encountered in scorpion envenoming. 相似文献