首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   160篇
  免费   11篇
耳鼻咽喉   1篇
儿科学   7篇
妇产科学   3篇
基础医学   21篇
口腔科学   1篇
临床医学   5篇
内科学   24篇
神经病学   5篇
特种医学   6篇
外科学   16篇
综合类   2篇
预防医学   4篇
眼科学   49篇
药学   12篇
中国医学   1篇
肿瘤学   14篇
  2024年   1篇
  2022年   12篇
  2021年   12篇
  2020年   3篇
  2019年   5篇
  2018年   11篇
  2017年   3篇
  2016年   4篇
  2015年   11篇
  2014年   18篇
  2013年   8篇
  2012年   18篇
  2011年   17篇
  2010年   12篇
  2009年   4篇
  2008年   7篇
  2007年   5篇
  2006年   9篇
  2005年   2篇
  2004年   5篇
  2003年   3篇
  2002年   1篇
排序方式: 共有171条查询结果,搜索用时 35 毫秒
21.
A novel technique of thyroplasty—Sandwich thyroplasty—described, with modification of Isshiki’s thyroplasty window to overcome the problems of securing and stabilising the silicone implant in the window thus simplifying the medialization of the vocal fold. Seventy five patients diagnosed with paralytic dysphonia of varied etiology, attending Sri Sathya Sai Institute of ORL, Guntur, India from January 2005 to January 2012, were subjected to this new technique. Medialization of vocal fold was achieved by sandwiching and stabilising a silicone implant between a superiorly based cartilaginous hinged door and the inner perichondrium of the modified thyroplasty window. Results were analysed based upon pre and postoperative voice handicap index, maximum phonation time readings and video-stroboscopic findings. The results were statistically significant with no untoward complications. Sandwich thyroplasty technique facilitated easier fixation and stabilization of silicone implant avoiding difficult and time consuming, techniques involving flanges or sutures.  相似文献   
22.
23.
24.
Schlafen-11 (SLFN11) inactivation in ∼50% of cancer cells confers broad chemoresistance. To identify therapeutic targets and underlying molecular mechanisms for overcoming chemoresistance, we performed an unbiased genome-wide RNAi screen in SLFN11-WT and -knockout (KO) cells. We found that inactivation of Ataxia Telangiectasia- and Rad3-related (ATR), CHK1, BRCA2, and RPA1 overcome chemoresistance to camptothecin (CPT) in SLFN11-KO cells. Accordingly, we validate that clinical inhibitors of ATR (M4344 and M6620) and CHK1 (SRA737) resensitize SLFN11-KO cells to topotecan, indotecan, etoposide, cisplatin, and talazoparib. We uncover that ATR inhibition significantly increases mitotic defects along with increased CDT1 phosphorylation, which destabilizes kinetochore-microtubule attachments in SLFN11-KO cells. We also reveal a chemoresistance mechanism by which CDT1 degradation is retarded, eventually inducing replication reactivation under DNA damage in SLFN11-KO cells. In contrast, in SLFN11-expressing cells, SLFN11 promotes the degradation of CDT1 in response to CPT by binding to DDB1 of CUL4CDT2 E3 ubiquitin ligase associated with replication forks. We show that the C terminus and ATPase domain of SLFN11 are required for DDB1 binding and CDT1 degradation. Furthermore, we identify a therapy-relevant ATPase mutant (E669K) of the SLFN11 gene in human TCGA and show that the mutant contributes to chemoresistance and retarded CDT1 degradation. Taken together, our study reveals new chemotherapeutic insights on how targeting the ATR pathway overcomes chemoresistance of SLFN11-deficient cancers. It also demonstrates that SLFN11 irreversibly arrests replication by degrading CDT1 through the DDB1–CUL4CDT2 ubiquitin ligase.

Schlafen-11 (SLFN11) is an emergent restriction factor against genomic instability acting by eliminating cells with replicative damage (16) and potentially acting as a tumor suppressor (6, 7). SLFN11-expressing cancer cells are consistently hypersensitive to a broad range of chemotherapeutic drugs targeting DNA replication, including topoisomerase inhibitors, alkylating agents, DNA synthesis, and poly(ADP-ribose) polymerase (PARP) inhibitors compared to SLFN11-deficient cancer cells, which are chemoresistant (1, 2, 4, 817). Profiling SLFN11 expression is being explored for patients to predict survival and guide therapeutic choice (8, 13, 1824).The Cancer Genome Atlas (TCGA) and cancer cell databases demonstrate that SLFN11 mRNA expression is suppressed in a broad fraction of common cancer tissues and in ∼50% of all established cancer cell lines across multiple histologies (1, 2, 5, 8, 13, 25, 26). Silencing of the SLFN11 gene, like known tumor suppressor genes, is under epigenetic mechanisms through hypermethylation of its promoter region and activation of histone deacetylases (HDACs) (21, 23, 25, 26). A recent study in small-cell lung cancer patient-derived xenograft models also showed that SLFN11 gene silencing is caused by local chromatin condensation related to deposition of H3K27me3 in the gene body of SLFN11 by EZH2, a histone methyltransferase (11). Targeting epigenetic regulators is therefore an attractive combination strategy to overcome chemoresistance of SLFN11-deficient cancers (10, 25, 26). An alternative approach is to attack SLFN11-negative cancer cells by targeting the essential pathways that cells use to overcome replicative damage and replication stress. Along these lines, a prior study showed that inhibition of ATR (Ataxia Telangiectasia- and Rad3-related) kinase reverses the resistance of SLFN11-deficient cancer cells to PARP inhibitors (4). However, targeting the ATR pathway in SLFN11-deficient cells has not yet been fully explored.SLFN11 consists of two functional domains: A conserved nuclease motif in its N terminus and an ATPase motif (putative helicase) in its C terminus (2, 6). The N terminus nuclease has been implicated in the selective degradation of type II tRNAs (including those coding for ATR) and its nuclease structure can be derived from crystallographic analysis of SLFN13 whose N terminus domain is conserved with SLFN11 (27, 28). The C terminus is only present in the group III Schlafen family (24, 29). Its potential ATPase activity and relationship to chemosensitivity to DNA-damaging agents (35) imply that the ATPase/helicase of SLFN11 is involved specifically in DNA damage response (DDR) to replication stress. Indeed, inactivation of the Walker B motif of SLFN11 by the mutation E669Q suppresses SLFN11-mediated replication block (5, 30). In addition, SLFN11 contains a binding site for the single-stranded DNA binding protein RPA1 (replication protein A1) at its C terminus (3, 31) and is recruited to replication damage sites by RPA (3, 5). The putative ATPase activity of SLFN11 is not required for this recruitment (5) but is required for blocking the replication helicase complex (CMG-CDC45) and inducing chromatin accessibility at replication origins and promoter sites (5, 30). Based on these studies, our current model is that SLFN11 is recruited to “stressed” replication forks by RPA filaments formed on single-stranded DNA (ssDNA), and that the ATPase/helicase activity of SLFN11 is required for blocking replication progression and remodeling chromatin (5, 30). However, underlying mechanisms of how SLFN11 irreversibly blocks replication in DNA damage are still unclear.Increased RPA-coated ssDNA caused by DNA damage and replication fork stalling also triggers ATR kinase activation, promoting subsequent phosphorylation of CHK1, which transiently halts cell cycle progression and enables DNA repair (32). ATR inhibitors are currently in clinical development in combination with DNA replication damaging drugs (33, 34), such as topoisomerase I (TOP1) inhibitors, which are highly synergistic with ATR inhibitors in preclinical models (35). ATR inhibitors not only inhibit DNA repair, but also lead to unscheduled replication origin firing (36), which kills cancer cells (37, 38) by inducing genomic alterations due to faulty replication and mitotic catastrophe (33).The replication licensing factor CDT1 orchestrates the initiation of replication by assembling prereplication complexes (pre-RC) in G1-phase before cells enter S-phase (39). Once replication is started by loading and activation of the MCM helicase, CDT1 is degraded by the ubiquitin proteasomal pathway to prevent additional replication initiation and ensure precise genome duplication and the firing of each origin only once per cell cycle (39, 40). At the end of G2 and during mitosis, CDT1 levels rise again to control kinetochore-microtubule attachment for accurate chromosome segregation (41). Deregulated overexpression of CDT1 results in rereplication, genome instability, and tumorigenesis (42). The cellular CDT1 levels are tightly regulated by the damage-specific DNA binding protein 1 (DDB1)–CUL4CDT2 E3 ubiquitin ligase complex in G1-phase (43) and in response to DNA damage (44, 45). How CDT1 is recognized by CUL4CDT2 in response to DNA damage remains incompletely known.In the present study, starting with a human genome-wide RNAi screen, bioinformatics analyses, and mechanistic validations, we explored synthetic lethal interactions that overcome the chemoresistance of SLFN11-deficient cells to the TOP1 inhibitor camptothecin (CPT). The strongest synergistic interaction was between depletion of the ATR/CHK1-mediated DNA damage response pathways and DNA-damaging agents in SLFN11-deficient cells. We validated and expanded our molecular understanding of combinatorial strategies in SLFN11-deficient cells with the ATR (M4344 and M6620) and CHK1 (SRA737) inhibitors in clinical development (33, 46, 47) and found that ATR inhibition leads to CDT1 stabilization and hyperphosphorylation with mitotic catastrophe. Our study also establishes that SLFN11 promotes the degradation of CDT1 by binding to DDB1, an adaptor molecule of the CUL4CDT2 E3 ubiquitin ligase complex, leading to an irreversible replication block in response to replicative DNA damage.  相似文献   
25.
We investigated the safety and efficacy of drug-eluting stents (DESs) for the treatment of patients who presented with in-stent restenosis (ISR) of saphenous vein grafts (SVGs) and compared the in-hospital and 6-month clinical outcomes of DESs with those of intravascular brachytherapy and balloon angioplasty alone. Records of 187 patients who presented with ISR of SVGs were analyzed. Of these, 34 consecutive patients were treated with DES implantation, 93 were treated with intravascular brachytherapy (n = 60 with gamma-radiation, n = 33 with beta-radiation), and 60 patients underwent conventional treatment with balloon angioplasty alone. Clinical and angiographic characteristics at baseline were comparable between groups. The DES group had less non-Q-wave myocardial infarction than did the intravascular brachytherapy and balloon angioplasty groups (0%, 20%, and 26%, p = 0.003 and <0.001, respectively). At 6 months, death occurred in 0% of the DES group, 2% of the intravascular brachytherapy group, and 5% of the balloon angioplasty group (p = 0.36 and <0.18, respectively). Target lesion revascularization/major adverse cardiac events were similar in the intravascular brachytherapy and DES groups (12% and 3%, p = 0.13) and significantly decreased compared with patients who were treated with balloon angioplasty alone (55%, p <0.001 for the 2 comparisons). The results of this retrospective analysis suggest that DES implantation is at least as effective and safe as intravascular brachytherapy for the treatment of SVG ISR and that these treatment modalities are superior to balloon angioplasty alone.  相似文献   
26.

Purpose:

Goldmann applanation tonometer (GAT) is the current Gold standard tonometer. However, its calibration error is common and can go unnoticed in clinics. Its company repair has limitations. The purpose of this report is to describe a self-taught technique of rectifying calibration error of GAT.

Materials and Methods:

Twenty-nine slit-lamp-mounted Haag-Streit Goldmann tonometers (Model AT 900 C/M; Haag-Streit, Switzerland) were included in this cross-sectional interventional pilot study. The technique of rectification of calibration error of the tonometer involved cleaning and lubrication of the instrument followed by alignment of weights when lubrication alone didn’t suffice. We followed the South East Asia Glaucoma Interest Group''s definition of calibration error tolerance (acceptable GAT calibration error within ±2, ±3 and ±4 mm Hg at the 0, 20 and 60-mm Hg testing levels, respectively).

Results:

Twelve out of 29 (41.3%) GATs were out of calibration. The range of positive and negative calibration error at the clinically most important 20-mm Hg testing level was 0.5 to 20 mm Hg and -0.5 to -18 mm Hg, respectively. Cleaning and lubrication alone sufficed to rectify calibration error of 11 (91.6%) faulty instruments. Only one (8.3%) faulty GAT required alignment of the counter-weight.

Conclusions:

Rectification of calibration error of GAT is possible in-house. Cleaning and lubrication of GAT can be carried out even by eye care professionals and may suffice to rectify calibration error in the majority of faulty instruments. Such an exercise may drastically reduce the downtime of the Gold standard tonometer.  相似文献   
27.
28.
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号