Antibodies against apamin, a neurotoxic polypeptide from bee venom were raised in rabbits by immunization with apamin or apamin-BSA conjugates. 3H-apamin or 125I-apamin were used in radioimmunoassay with anti-apamin for the detection of the apamin antigenic site. The inhibitory activity toward the labelled apamin-anti-apamin binding was maximal with unlabelled apamin and decreased in the range: apamin > Cys1, Lys4-disuccinilated apamin > Cys1, Lys4-diacetylated apamin > Cys1, Lys4-diacetylated apamin with carboxymethylated His18. Dipyrimidyl-Orn13,Orn14-apamin derivative almost had no inhibitory activity on labelled apamin binding emphasizing that Arg13, Arg14 are the most essential for the apamin topographic antigenic site. 相似文献
We investigated preparatory signals for spatial location and objects in normal observers using functional magnetic resonance imaging (fMRI). Activity for attention-directing cues was separated from activity for subsequent test arrays containing the target stimulus. Subjects were more accurate in discriminating a target face among distracters when they knew in advance its location (spatial directional cue), as compared to when the target could randomly appear at one of two locations (spatial neutral cue), indicating that the spatial cue was used. Spatially specific activations occurred in a region at the intersection of the ventral intraparietal sulcus and transverse occipital sulcus (vIPS-TOS), which showed significantly stronger activation for rightward- than leftward-directing cues, while other fronto-parietal areas were activated by the cue but did not show spatial specificity. In visual cortex, activity was weak or absent in retinotopic occipital regions following attention-directing cues and this activity was not spatially specific.
In a separate task, subject discriminated a target outdoor scene among distracters after the presentation of spatial neutral cues. There was no significant difference in dorsal frontoparietal activity during the face versus scene discrimination task. Also, there was only weak evidence for selective preparatory activity in ventral object-selective regions, although the activation of these regions to the subsequent test array did depend upon which discrimination (face or place) was performed. We conclude first that under certain circumstances, spatial cues that produce strong behavioral effects may modulate parietal-occipital regions in a spatially specific manner without producing similar modulations in retinotopic occipital regions. Second, attentional modulations of object-selective regions in temporal-occipital cortex can occur even though preparatory object-selective modulations of those regions are absent or weak. 相似文献
The impact of severe hypoxia and preconditioning on the expression of the mitochondrial antioxidant thioredoxin-2 (Trx-2) in rat hippocampus (CA1, CA2, CA3 fields, and dentate gyrus) and neocortex was studied by immunocytochemistry. The preconditioning consisted of three trials of mild hypobaric hypoxia (360 Torr, 2 hr) spaced at 24 hr. The last trial was followed by severe hypobaric hypoxia (180 Torr, 3 hr) 24 hr later. Both in hippocampus and in neocortex, severe hypobaric hypoxia resulted in enhanced Trx-2 expression at 3 hr, followed by a slight decline in Trx-2 levels, which nevertheless remained increased at 24 hr elsewhere except for the CA1 region. The preconditioning considerably augmented severe hypoxia-induced Trx-2 immunoreactivity, affecting both the number of immunoreactive cells and the intensity of immunostaining. The findings suggest a role for Trx-2 in the formation of brain hypoxic/ischemic tolerance accomplished by the preconditioning. 相似文献
INTRODUCTION: In vitro evaluation of drug effects on hERG K(+) channels is a valuable tool for identifying potential proarrhythmic side effects in drug safety testing. Patch-clamp recording of hERG K(+) current in mammalian cells can accurately evaluate drug effects, but the methodology has not been standardized, and results vary widely. Our objective was to evaluate two potential sources of variability: the temperature at which recordings are performed and the voltage pulse protocol used to activate hERG K(+) channels expressed in HEK293 cells. METHODS: A panel of 15 drugs that spanned a broad range of potency for hERG inhibition and pharmacological class was evaluated at both room and near-physiological temperatures using several patch-clamp voltage protocols. Concentration-response analysis was performed with three stimulus protocols: 0.5- and 2-s step pulses, or a step-ramp pattern. RESULTS: Block by 2 of the 15 drugs tested, d,l-sotalol (antiarrhythmic) and erythromycin (antibiotic), was markedly temperature sensitive. hERG inhibition measured using a 2-s step-pulse protocol underestimated erythromycin potency compared with results obtained with a step-ramp protocol. Using conservative acceptance criteria and the step-ramp protocol, the IC(50) values for hERG block differed by less than twofold for 15 drugs. DISCUSSION: Data obtained at near-physiological temperatures using a step-ramp pattern are highly repeatable and provide a conservative safety evaluation of hERG inhibition. 相似文献
In cardiovascular tissue engineering, synthetic or biologic scaffolds serve as templates for tissue development. Currently used scaffolds showing toxic degradation and immunogenic reactions are still far from ideal. We present a new alternative method to develop completely autologous human tissue without using any scaffold materials. Human vascular cells of arterial and venous origin were cultured to form cell sheets over a 4 week period under standard conditions. Thereafter, cell sheets of each origin were folded and cultured in a newly developed frame device for an additional 4 weeks. Controls remained under standard culture conditions. Tissue development was evaluated by morphology and biochemical assays. The formation of multilayered cell sheets and production of extracellular matrix were observed in all groups. Folded and framed neo-tissue showed a solid structure, with increased matrix formation and tissue organization when compared with the control groups. DNA content indicated significantly lower cell proliferation, and hydroxyproline assay indicated significantly higher collagen content in the framed cell sheets. We present a new approach to the engineering of cardiovascular tissue without the use of biodegradable scaffold material. Three-dimensional, completely autologous human tissue may be developed on the basis of this structure, thus avoiding scaffold induced toxic degradation or inflammatory reaction. 相似文献
This study is aimed at the development of a method to fabricate porous spherical hydroxyapatite (HA) granules, which can be impregnated with a drug. These drug-loaded particles can be used as a system for targeted and time-controlled drug delivery, e.g. in bone surgery. The method to produce porous granules is based on liquids immiscibility effect. A suspension of HA powder in aqueous solution of gelatin and oil as a dispersion media were used. By stirring the mixtures of these immiscible liquids, granules of 50 2,000 microm diameter can easily be produced. Dependence of the granules characteristics on the preparation route was studied. In vivo experiments were performed to simulate drug release kinetics from the granules to the blood of rats. 相似文献
Cationic copolymers were synthesized by conjugation of branched 2 kDa polyethylenimine (PEI) and Pluronic block copolymers (F38, P85, P123). Compositions of these copolymers mixed with corresponding free Pluronics at weight ratio 1:9 were used to complex phosphorothioate oligonucleotides (ODN). As a result stable suspensions of small micelle-like particles (<220 nm) were obtained. Incorporation of ODN in these formulations increased uptake of ODN in KBv cells and increased sequence specific activity of antisense ODN targeted against MDR gene in multidrug resistant cells resulting in inhibition of the functional activity of P-glycoprotein (P-gp) in these cells. Furthermore, these formulations increased transport of ODN across model intestinal barrier, Caco-2 cell monolayers, suggesting that they could be useful for oral delivery of biologically active ODN. 相似文献
Purpose The aim of the study is to synthesize and characterize nanogel carriers composed of amphiphilic polymers and cationic polyethylenimine
for encapsulation and delivery of cytotoxic nucleoside analogs 5′-triphosphates (NTPs) into cancer cells.
Methods Nanogels were synthesized by a novel micellar approach and compared with carriers prepared by the emulsification/evaporation
method. Complexes of nanogels with NTP were prepared; particle size and in vitro drug release were characterized. Resistance of the nanogel-encapsulated NTP to enzymatic hydrolysis was analyzed by ion-pair
high-performance liquid chromatography. Binding to isolated cellular membranes, cellular accumulation and cytotoxicity were
compared using breast carcinoma cell lines CL-66, MCF-7, and MDA-MB-231. In vivo biodistribution of the 3H-labeled NTP encapsulated in different types of nanogels was evaluated in comparison to the injected NTP alone.
Results Nanogels with a particle size of 100–300 nm in the unloaded form and less than 140 nm in the NTP-loaded form were prepared.
An in vitro release of NTP was >50% during the first 24 h. Nanogel formulations ensured increased NTP drug stability against enzymatic
hydrolysis as compared to the drug alone. Pluronic?-based nanogels NG(F68), NG(F127), NG(P85), and NGM(P123) demonstrated
2–2.5 times enhanced interaction with cellular membranes and association with various cancer cells compared to NG(PEG). Among
them, NG(F68) and NG(F127) exhibited the lowest cytotoxicity. Injection of nanogel-formulated NTP significantly modulated
the drug accumulation in different mouse organs.
Conclusions Nanogels composed of Pluronic? F68 and P123 were shown to display certain advanced properties compared to NG(PEG) as a drug
delivery system for NTP analogs. Formulations of nucleoside analogs in active NTP form with these nanogels will improve the
delivery of these cytotoxic drugs to cancer cells and the therapeutic potential of this anticancer chemotherapy.
Electronic supplementary material Supplementary material is available in the online version of this article at . 相似文献
Activation of cytotoxic nucleoside analogues in vivo depends primarily on their cell-specific phosphorylation. Anticancer chemotherapy using nucleoside analogues may be significantly enhanced by intracellular administration of active phosphorylated drugs. However, the cellular transport of anionic compounds is very ineffective and restricted by many drug efflux transporters. Recently developed cationic nanogel carriers can encapsulate large amounts of nucleoside 5'-triphosphates that form polyionic complexes with protonated amino groups on the polyethylenimine backbone of the nanogels. In this paper, the 5'-triphosphate of an antiviral nucleoside analogue, 3'-azido-2',3'-dideoxythymidine (AZT), was efficiently synthesized and its complexes with nanogels were obtained and evaluated as potential cytotoxic drug formulations for treatment of human breast carcinoma cells. A selective phosphorylating reagent, tris-imidazolylphosphate, was used to convert AZT into the nucleoside analogue 5'-triphosphate using a one-pot procedure. The corresponding 3'-azido-2',3'-dideoxythymidine 5'-triphosphate (AZTTP) was isolated with high yield (75%). Nanogels encapsulated up to 30% of AZTTP by weight by mixing solutions of the carrier and the drug. The AZTTP/nanogel formulation showed enhanced cytotoxicity in two breast cancer cell lines, MCF-7 and MDA-MB-231, demonstrating IC50 values 130-200 times lower than those values for AZT alone. The exact mechanism of drug release from nanogels remains unclear. One mechanism could involve interaction with negatively charged counterions. A high affinity of nanogels to isolated cellular membranes has been observed, especially for nanogels made of amphiphilic block copolymer, Pluronic P85. Cellular trafficking of nanogel particles, contrasted by polyethylenimine-coordinated copper(II) ions, was studied by transmission electron microscopy (TEM), which revealed membranotropic properties of nanogels. A substantial release of encapsulated drug was observed following interactions of drug-loaded nanogels with cellular membranes. A drug release mechanism triggered by interaction of the drug-loaded nanogels with phospholipid bilayer is proposed. The results illustrate therapeutic potential of the phosphorylated nucleoside analogues formulated in nanosized cross-linked polymeric carriers for cancer chemotherapy. 相似文献