首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2934篇
  免费   210篇
  国内免费   16篇
耳鼻咽喉   56篇
儿科学   54篇
妇产科学   38篇
基础医学   426篇
口腔科学   76篇
临床医学   314篇
内科学   684篇
皮肤病学   29篇
神经病学   227篇
特种医学   246篇
外科学   473篇
综合类   12篇
一般理论   1篇
预防医学   135篇
眼科学   38篇
药学   152篇
中国医学   9篇
肿瘤学   190篇
  2023年   34篇
  2022年   128篇
  2021年   185篇
  2020年   104篇
  2019年   126篇
  2018年   128篇
  2017年   86篇
  2016年   109篇
  2015年   132篇
  2014年   160篇
  2013年   176篇
  2012年   248篇
  2011年   244篇
  2010年   110篇
  2009年   101篇
  2008年   177篇
  2007年   154篇
  2006年   149篇
  2005年   143篇
  2004年   111篇
  2003年   101篇
  2002年   95篇
  2001年   16篇
  2000年   17篇
  1999年   25篇
  1998年   12篇
  1997年   3篇
  1996年   15篇
  1995年   5篇
  1994年   3篇
  1993年   2篇
  1992年   6篇
  1991年   4篇
  1990年   4篇
  1989年   2篇
  1987年   5篇
  1985年   3篇
  1977年   5篇
  1976年   1篇
  1975年   1篇
  1974年   4篇
  1973年   3篇
  1972年   1篇
  1971年   3篇
  1970年   4篇
  1969年   2篇
  1968年   2篇
  1903年   2篇
  1901年   1篇
  1898年   1篇
排序方式: 共有3160条查询结果,搜索用时 31 毫秒
91.
92.
93.
94.
95.
Atrial fibrillation is triggered by the pulmonary veins in humans. Although atrial fibrillation is known to occur in other species, the mechanisms of disease in these are not known. Here we present evidence for pulmonary vein triggers in the horse, where 3D HD Grid mapping was undertaken in the conscious state in the absence of fluoroscopy.  相似文献   
96.
97.
The afternystagmus that occurs in the dark after gaze fixation during optokinetic stimulation is directed in the opposite direction relative to the previous optokinetic stimulus. The mechanism responsible for such afternystagmus after suppression of optokinetic nystagmus (ASOKN) is unclear. Several hypotheses have been put forward to explain it, but none is conclusive. We hypothesized that ASOKN is driven by the interaction of two mechanisms: (1) motion-aftereffect (MAE)-induced eye movements and (2) retinal afterimages (RAIs) produced by fixation during the suppression of optokinetic nystagmus (OKN). We examined the correlation among ASOKN, MAE-induced eye movements, and RAIs in healthy subjects. Adapting stimuli consisted of moving random dot patterns and a fixation spot and their brightness was adjusted to induce different RAI durations. Test patterns were a stationary random dot pattern (to test for the presence of a MAE), a dim homogeneous background (to test for MAE driven eye movements), and a black background (to test for ASOKN and RAIs). MAEs were reported by 16 out of 17 subjects, but only 7 out of 17 subjects demonstrated MAE-induced eye movements. Importantly, ASOKN was only found when these seven subjects reported a RAI after suppression of OKN. Moreover, the duration of ASOKN was longer for high-brightness stimuli compared with low-brightness stimuli, just as RAIs persist longer with increasing brightness. We conclude that ASOKN results from the interaction of MAE-induced eye movements and RAIs.  相似文献   
98.
The epithelial Na+ channel (ENaC) is a key regulator of Na+ absorption in various epithelia including the distal nephron and the distal colon. ENaC is a constitutively active channel, but its activity is modulated by a number of mechanisms. These include proteolytic activation, ubiquitination and cell surface expression, phosphorylation, intracellular Na+ concentration, and shear stress. ENaC is related to the bile acid-sensitive ion channel (BASIC), a channel that is expressed in the epithelial cells of bile ducts. BASIC is activated by millimolar concentrations of extracellular bile acids. Bile acids are synthesized by the liver and secreted into the duodenum to aid lipolysis. A large fraction of the secreted bile acids is absorbed by the ileum and recirculated into the liver, but a small fraction passes the colon and is excreted. Bile acids can influence the ion transport processes in the intestinal tract including the colon. In this study, we show that various bile acids present in rat bile potently and reversibly increase the activity of rat ENaC expressed in Xenopus oocytes, suggesting that bile acids are natural modulators of ENaC activity.  相似文献   
99.
In addition to good mechanical properties needed for three-dimensional tissue engineering, the combination of alginate dialdehyde, gelatin and nano-scaled bioactive glass (45S5) is supposed to combine excellent cellular adhesion, proliferation and differentiation properties, good biocompatibility and predictable degradation rates. The goal of this study was to evaluate thein vitro and in vivo biocompatibility as a first step on the way to its use as a scaffold in bone tissue engineering. In vitro evaluation showed good cell adherence and proliferation of bone marrow derived mesenchymal stem cells seeded on covalently crosslinked alginate dialdehyde-gelatin (ADA-GEL) hydrogel films with and without 0.1% nano-Bioglass®(nBG). Lactate dehydrogenase (LDH)- and mitochondrial activity significantly increased in both ADA-GEL and ADA-GEL-nBG groups compared to alginate. However, addition of 0.1% nBG seemed to have slight cytotoxic effect compared to ADA-GEL. In vivo implantation did not produce a significant inflammatory reaction, and ongoing degradation could be seen after four weeks. Ongoing vascularization was detected after four weeks. The good biocompatibility encourages future studies using ADA-GEL and nBG for bone tissue engineering application.  相似文献   
100.
Many human musical scales, including the diatonic major scale prevalent in Western music, are built partially or entirely from intervals (ratios between adjacent frequencies) corresponding to small-integer proportions drawn from the harmonic series. Scientists have long debated the extent to which principles of scale generation in human music are biologically or culturally determined. Data from animal “song” may provide new insights into this discussion. Here, by examining pitch relationships using both a simple linear regression model and a Bayesian generative model, we show that most songs of the hermit thrush (Catharus guttatus) favor simple frequency ratios derived from the harmonic (or overtone) series. Furthermore, we show that this frequency selection results not from physical constraints governing peripheral production mechanisms but from active selection at a central level. These data provide the most rigorous empirical evidence to date of a bird song that makes use of the same mathematical principles that underlie Western and many non-Western musical scales, demonstrating surprising convergence between human and animal “song cultures.” Although there is no evidence that the songs of most bird species follow the overtone series, our findings add to a small but growing body of research showing that a preference for small-integer frequency ratios is not unique to humans. These findings thus have important implications for current debates about the origins of human musical systems and may call for a reevaluation of existing theories of musical consonance based on specific human vocal characteristics.Many human musical scales, including the diatonic major scale prevalent in Western music, are built partially or entirely from intervals (ratios between adjacent frequencies) corresponding to small-integer ratios drawn from the harmonic series (1). A long-running debate concerns the extent to which principles underlying the structure of human musical scales derive from biological aspects of auditory perception and/or vocal production or are historical cultural “accidents” (24). The songs of nonhuman animals, such as birds or whales, potentially offer a valuable perspective on this debate. On the one hand, features of human music that are culturally bound, or dependent on specific characteristics of the human voice or auditory system, should be absent in animal vocalizations. On the other hand, aspects of human music observed in the vocalizations of other species seem likely to be partially determined by general physical or biological constraints rather than solely by cultural practices. Such shared features would complement recent research suggesting that common motor constraints shape both human song and that of some bird species (5).The physical principles underlying vocal production in songbirds are well understood (610) and do not differ fundamentally from those of other vertebrates. Sound is produced by tissue vibrations in the syrinx, a bird-specific organ located at the base of the trachea. Flow-driven vibrations of fleshy membranes within the syrinx (in songbirds, the medial and lateral labia) generate a periodic source signal that is filtered by the air column within the trachea and mouth and then emitted to the environment. These principles are important in formulating various alternative hypotheses considered below.Naturalists have long wondered whether birdsong could be said to have musical properties (1113). However, early studies on pitch selection tended to be anecdotal, based on a small sample size, or lacking in analytical rigor. Two more recent studies specifically comparing pitch selection in bird song and human musical scales concluded that birdsong does not make preferential use of musical intervals found in commonly used Western musical scales (14, 15). However, because these studies each only examined one species [the white-throated sparrow (Zonotrichia albicollis) and the nightingale wren (Microcerculus philomela), respectively], a conclusion that birdsong in general does not exhibit musical properties seems premature. Indeed, other studies have shown preferential use of consonant intervals in tropical boubou shrikes (Laniarius aethiopicus) (16) and musician wrens (Cyphorhinus arada) (17), although in the first case no rigorous statistical analysis was presented.Here, we investigated songs of the hermit thrush (Catharus guttatus), a medium-sized North American songbird whose famously “musical”-sounding song has attracted the attention of ornithologists and musicians alike (18) but has not yet been subjected to detailed pitch analysis. Its songs are composed of elements (the smallest unit of song construction, seen as continuous uninterrupted traces on spectrograms) that may exhibit either a variable pitch, such as trills and slides, or a stable pitch—pure, non-frequency-modulated, “flutelike” sounds. These stable sounds, which we refer to as “notes” (Fig. 1), are characterized by strong fundamental frequencies and very weak higher harmonics, making them ideally suited for an analysis of pitch relationships (15). Males typically sing 6–10 different song types, defined as nearly identical sequences of elements, durations, and frequencies. In a number of early- and mid-20th-century studies, hermit thrush song was variously attributed with use of major, minor, and pentatonic scales (19, 20) and claimed to follow the overtone series (21). However, these early studies again suffered from small sample sizes and anecdotal reporting and were not based on rigorous acoustic analysis. More recent hermit thrush studies have focused on regional differences and song-type ordering, rather than pitch selection (22, 23).Open in a separate windowFig. 1.Song of the hermit thrush (C. guttatus). One song type of a single male hermit thrush, illustrating the various elements that can be observed in songs of this species. Only “notes” (elements with stable pitch) were analyzed in this study because the other element types have no clearly defined or measurable pitch.Here we tested the overtone hypothesis, which predicts that the frequencies of the individual song notes are integer multiples (harmonics) of an implied (but not actually sung) base frequency (hereafter fi). This hypothesis seems plausible because, unlike some previous claims, it does not attribute human-specific music-theoretical concepts to hermit thrush song. Moreover, the subjective impression of trained musicians listening to hermit thrush songs (played at one-sixth of the original speed to shift the speed and frequency of the songs into a range more suitable for human hearing) was that most notes indeed seemed to follow an overtone series (see Fig. 2 and Audio File S1 for the corresponding sound example). However, determining whether a set of notes are harmonics of a frequency not present in the set requires a rigorous procedure to estimate and evaluate fi. To this end, we used two different statistical approaches, an ordinary least-squares regression model and a generative Bayesian estimator. Both approaches were used to test the hypothesis that a song is an exchangeable sequence of frequencies that are integer multiples of some implied fi, versus the null hypothesis that songs are generated by drawing frequencies out of a random log-normal distribution (see Materials and Methods for details). By using a Bayesian approach in addition to the least-squares regression model we evaluate whether our analyses represent a rigorous test of our overtone hypothesis and not simply a post hoc explanation that minimizes an error measure by “memorizing” the data. These properties make the Bayesian evaluation statistically more rigorous than least-squares fitting.Open in a separate windowFig. 2.Frequency distribution of a hermit thrush song compared with an overtone series. (A) Notes of a hermit thrush song. (B) The same notes rearranged in ascending order to show how they correspond to overtones 3, 4, 5, and 6 of an overtone series fitted to the frequencies corresponding to these notes (the complete stacked overtone series is shown on the right).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号