首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   373篇
  免费   39篇
  国内免费   1篇
耳鼻咽喉   2篇
儿科学   30篇
妇产科学   14篇
基础医学   65篇
口腔科学   3篇
临床医学   14篇
内科学   63篇
皮肤病学   4篇
神经病学   87篇
特种医学   6篇
外科学   49篇
综合类   4篇
预防医学   6篇
眼科学   2篇
药学   27篇
肿瘤学   37篇
  2022年   2篇
  2021年   2篇
  2020年   3篇
  2019年   4篇
  2018年   7篇
  2017年   5篇
  2016年   11篇
  2015年   11篇
  2014年   11篇
  2012年   4篇
  2011年   5篇
  2010年   4篇
  2009年   8篇
  2008年   19篇
  2007年   18篇
  2006年   25篇
  2005年   25篇
  2004年   21篇
  2003年   23篇
  2002年   29篇
  2001年   23篇
  2000年   13篇
  1999年   16篇
  1998年   6篇
  1997年   7篇
  1996年   3篇
  1995年   5篇
  1994年   3篇
  1993年   2篇
  1992年   9篇
  1991年   9篇
  1990年   4篇
  1989年   7篇
  1988年   6篇
  1987年   4篇
  1986年   5篇
  1985年   3篇
  1984年   3篇
  1983年   5篇
  1981年   2篇
  1978年   2篇
  1976年   5篇
  1975年   3篇
  1970年   2篇
  1969年   4篇
  1932年   2篇
  1925年   2篇
  1920年   2篇
  1912年   1篇
  1906年   1篇
排序方式: 共有413条查询结果,搜索用时 31 毫秒
121.
122.
The original guidelines drawn up for the management of the neuronopathic forms of Gaucher disease were felt to be in need of revision; in particular, the role of high-dose enzyme replacement therapy (120 IU/kg of body weight every 2 weeks) in stabilizing neurological disease. The existing published evidence was analysed; it was concluded that it did not support the role of high-dose ERT, although this might be required to treat severe visceral disease.  相似文献   
123.
124.
125.
Quantitative analysis of epidermal innervation in Fabry disease   总被引:6,自引:0,他引:6  
OBJECTIVE: To use skin biopsy specimens to quantitate the cutaneous innervation density of Fabry patients who had preserved renal function. BACKGROUND: The small fiber neuropathy of Fabry disease is difficult to detect and quantitate by conventional methods. Because this neuropathy is a common characteristic of Fabry disease, quantitating changes in this parameter would be helpful in demonstrating the effectiveness of enzyme or gene replacement therapy. METHODS: Patients underwent skin biopsy at the thigh and foot. Innervation density was determined by counting free nerve endings in the epidermis. These data were compared with nerve conduction studies, and in selected patients, fiber quantitation of sural nerve biopsy specimens. RESULTS: The Fabry patients had normal results of nerve conduction studies and large fiber quantitation by sural nerve biopsy. However, the involvement of small cutaneous fibers in these patients was easily demonstrable and quantifiable by skin biopsy. All patients showed severe loss of intraepidermal innervation at the ankle, but fiber loss at the distal thigh was proportionately less severe. CONCLUSIONS: The nerve damage in Fabry patients with preserved renal function involves exclusively small myelinated and unmyelinated fibers, and skin biopsy is a useful in detecting and quantitating such damage. Comparison of cutaneous innervation density with quantitation of sural nerve biopsy specimens demonstrated that skin biopsy specimens were as sensitive in detecting the presence of neuropathy as were the nerve specimens. It is speculated that analysis of cutaneous innervation may provide a useful marker of the nervous system's response to specific therapy for Fabry disease.  相似文献   
126.

Background  

Autotaxin (ATX, NPP-2), originally purified as a potent tumor cell motility factor, is now known to be the long-sought plasma lysophospholipase D (LPLD). The integrity of the enzymatic active site, including three crucial histidine moieties, is required for motility stimulation, as well as LPLD and 5'nucleotide phosphodiesterase (PDE) activities. Except for relatively non-specific chelation agents, there are no known inhibitors of the ATX LPLD activity.  相似文献   
127.
Altarescu G  Moore DF  Schiffmann R 《Neurology》2005,64(12):2148-2150
Fabry disease is associated with increased risk of premature stroke and presumptive ischemic cerebral lesions. In 57 consecutive patients, 35% of whom had lesions on brain MRI, the authors found that genotypes of polymorphisms G-174C of interleukin-6, G894T of endothelial nitric oxide synthase, factor V G1691A mutation, and the A-13G and G79A of protein Z were all significantly associated with cerebral lesions. These findings suggest that these proteins modulate Fabry cerebral vasculopathy.  相似文献   
128.
Regulation of voltage-gated sodium channels is crucial to firing patterns that constitute the output of medium spiny neurons (MSN), projecting neurons of the striatum. This modulation is thus critical for the final integration of information processed within the striatum. It has been shown that the adenylate cyclase pathway reduces sodium currents in MSN through channel phosphorylation by cAMP-dependent protein kinase. However, it is unknown whether a phospholipase C (PLC)-mediated signaling cascade could also modulate voltage-gated sodium channels within MSN. Using the whole-cell patch clamp technique, we investigated the effects of activation of two key components in PLC-mediated signaling cascades: protein kinase C (PKC) and inositol-1,4,5-triphosphate (IP(3)) receptors on voltage-dependent sodium current. Cellular dialysis with phorbol 12-myristate 13-acetate, an activator of PKC, significantly reduced peak sodium current amplitude, while adenophostin A, an activator of IP(3) receptors, significantly increased peak sodium current amplitude. This effect of adenophostin was abolished by calcium chelation or by FK506, an inhibitor of calcineurin. These results suggest an antagonistic role of PKC and IP(3) in the modulation of striatal voltage-gated sodium channels, peak current amplitude being decreased through phosphorylation by PKC and increased through dephosphorylation by calcineurin.  相似文献   
129.
Evaluation of motor coordination and motor learning in mice remains a challenge as many factors may interact with the different tests used. Among these factors, genetic background has been reported to be a major determinant of mice performances in motor coordination tests. However, it is not known if the strain dependence of motor coordination and motor learning remains constant through life. In order to assess this point, we tested during 5 days male and female mice of three different strains (NMRI, C57BL/6J, and C57BL/6J x 129OlaHsd) in runway, rotarod, and thin rod tests at juvenile (first day of testing = postnatal day 19) and adult (3 months) age. We found a strong strain effect on motor performances and motor learning at juvenile age (C57BL/6J performing more poorly than the two other strains), whatever the tests used. Interestingly, the C57BL/6J mice were the best performing mice at the adult age. These strain rankings were observed either in male and female groups. These results demonstrate that the strain determinant on mice performances and motor learning is highly age dependent.  相似文献   
130.
We used spontaneously active monolayer networks in vitro, cultured on thin film microelectrode arrays as experimental platforms for the determination of trimethyltin chloride (TMT) toxicity. Two different tissues of the mouse CNS (spinal cord and auditory cortex) exhibited characteristic and dose-dependent changes of their electrophysiological activity patterns after treatment with TMT, a standard neurotoxicant. Spinal cord networks began to respond to TMT at 1-2 microM and shut off activity at 4-7 microM. Auditory cortex cultures started to respond at 2-3 microM and shut off activity at 7-8 microM. Repeated applications of low doses of TMT always influenced the electrical activity in a reversible manner, with no overt cytotoxic effects. The inhibitory concentrations for a 50% reduction of activity (IC ) were 1.5+/-0.5 microM (spinal cord) and 4.3+/-0.9 microM (auditory cortex) indicating a relatively low interculture variability within one tissue type. The non-overlapping IC50 range for cortical and spinal cord cultures may suggest tissue specificity for network responses to TMT. Shut-off concentrations were found to be within a factor of two of the lethal concentrations reported for mice in vivo. Action potential amplitude and shape did not change even when complete cessation of activity was approached, suggesting that acute TMT applications did not affect neuronal metabolism that would lead to a lowering of membrane potentials. Our results suggest that spontaneously active monolayer networks in vitro are suitable for toxicological investigations since network activity can be influenced in a dose-dependent manner. These properties allow the development of neurotoxicity biosensors based on physiological responses of spontaneously active networks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号