首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133篇
  免费   31篇
基础医学   28篇
临床医学   17篇
内科学   86篇
神经病学   3篇
外科学   1篇
药学   4篇
肿瘤学   25篇
  2022年   1篇
  2020年   1篇
  2014年   1篇
  2012年   3篇
  2011年   4篇
  2010年   3篇
  2009年   1篇
  2007年   1篇
  2005年   4篇
  2004年   2篇
  2003年   4篇
  2002年   2篇
  2001年   6篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1996年   5篇
  1995年   5篇
  1994年   7篇
  1993年   2篇
  1992年   14篇
  1991年   15篇
  1990年   8篇
  1989年   7篇
  1988年   4篇
  1987年   2篇
  1986年   9篇
  1985年   6篇
  1984年   3篇
  1983年   3篇
  1982年   9篇
  1981年   11篇
  1980年   4篇
  1979年   4篇
  1978年   5篇
  1976年   2篇
  1975年   1篇
排序方式: 共有164条查询结果,搜索用时 15 毫秒
81.
Loughran  TP Jr; Starkebaum  G; Ruscetti  FW 《Blood》1988,72(2):613-615
We established interleukin-2-(IL-2) dependent cell lines from three patients with large granular lymphocyte (LGL) leukemia. Phenotypic analysis demonstrated retention of the CD3+, CD8+ phenotype that was observed in the original leukemic LGL. Unique rearrangements of T-cell receptor beta gene occurring in uncultured leukemic LGL, were also found in cell lines, which suggests that the cell lines were derived from the original leukemic LGL clone in each case.  相似文献   
82.
Transforming growth factor-beta (TGF-beta) has potent antiproliferative effects on human hematopoietic progenitor cells. We report here that TGF-beta 1 and -beta 2 also exert bimodal dose-dependent stimulation of granulocyte-macrophage colony-stimulating factor (CSF) and granulocyte-CSF-induced day 7 granulocyte-macrophage colony-forming units. This increase in colony formation was restricted to low doses (0.01 to 1.0 ng/mL) of TGF-beta 1 and was due to increased granulopoiesis, showing that TGF-beta can affect the differentiation as well as the proliferation of hematopoietic progenitors. Furthermore, TGF-beta 3 was found to be a more potent inhibitor of hematopoietic progenitor cells than TGF-beta 1 and -beta 2. In contrast to the bidirectional proliferative effects of TGF-beta 1 and -beta 2, the effects of TGF-beta 3 on human hematopoiesis were only inhibitory, showing for the first time that TGF-beta isoforms differ not only in potencies but also with regard to the nature of the response they elicit.  相似文献   
83.
We have investigated the role of Smad family proteins, known to be important cytoplasmic mediators of signals from the transforming growth factor-beta (TGF-beta) receptor serine/threonine kinases, in TGF-beta-dependent differentiation of hematopoietic cells, using as a model the human promyelocytic leukemia cell line, HL-60. TGF-beta-dependent differentiation of these cells to monocytes, but not retinoic acid-dependent differentiation to granulocytes, was accompanied by rapid phosphorylation and nuclear translocation of Smad2 and Smad3. Vitamin D(3) also induced phosphorylation of Smad2/3 and monocytic differentiation; however the effects were indirect, dependent on its ability to induce expression of TGF-beta1. Simultaneous treatment of these cells with TGF-beta1 and all-trans-retinoic acid (ATRA), which leads to almost equal numbers of granulocytes and monocytes, significantly reduced the level of phospho-Smad2/3 and its nuclear accumulation, compared with that in cells treated with TGF-beta1 alone. TGF-beta1 and ATRA activate P42/44 mitogen-activated protein (MAP) kinase with nearly identical kinetics, ruling out its involvement in these effects on Smad phosphorylation. Addition of the inhibitor-of-protein serine/threonine phosphatases, okadaic acid, blocks the ATRA-mediated reduction in TGF-beta-induced phospho-Smad2 and shifts the differentiation toward monocytic end points. In HL-60R mutant cells, which harbor a defective retinoic acid receptor-alpha (RAR-alpha), ATRA is unable to reduce levels of TGF-beta-induced phospho-Smad2/3, coincident with its inability to differentiate these cells along granulocytic pathways. Together, these data suggest a new level of cross-talk between ATRA and TGF-beta, whereby a putative RAR-alpha-dependent phosphatase activity limits the levels of phospho-Smad2/3 induced by TGF-beta, ultimately reducing the levels of nuclear Smad complexes mediating the TGF-beta-dependent differentiation of the cells to monocytic end points.  相似文献   
84.
CD40 is expressed on both normal and neoplastic B lymphocytes. Signal transduction through CD40 in vitro has been shown to exert stimulatory effects on normal B cells and inhibitory effects on Epstein-Barr virus (EBV)-induced B-cell lymphoma lines and some other cell lines derived from patients with aggressive histology lymphoma. The transfer of normal human peripheral blood lymphocytes (huPBL) from EBV-seropositive donors into severe combined immune deficient (SCID) mice has been previously shown to result in the generation of human B-cell lymphomas. These tumors are similar to the highly aggressive EBV-induced lymphomas that can arise clinically after transplantation or in the setting of immunodeficiency. Treatment of huPBL-SCID chimeric mice with anti-CD40 or anti-CD20 monoclonal antibodies (MoAb) significantly delayed the development of EBV-induced B-cell lymphoma. However, the effects of the two MoAb were mechanistically distinct. Anti-CD40 treatment prevented lymphoma generation, while still allowing for functional human B-cell engraftment in the huPBL-SCID mice compared with mice receiving no treatment, all of which succumbed to lymphoma. By contrast, treatment with anti-CD20 significantly inhibited total human B-cell engraftment in the SCID recipients, which accounted for the absence of lymphomas. In vitro assays examining the transformation of human B cells by EBV also indicated that anti-CD40 could directly inhibit EBV- transformation, whereas anti-CD20 antibodies had no effect. Thus, anti- CD40 exerts selective effects to allow for the engraftment of normal human B cells and prevent the emergence of EBV lymphomas. Stimulation of CD40 by antibodies or its physiologic ligand may, therefore, be of significant clinical use in the prevention of EBV-induced B lymphomas that may arise when EBV-seropositive individuals receive immunosuppressive regimens after transplantation or in immune deficiency states, such as acquired immune deficiency syndrome.  相似文献   
85.
Friend spleen focus-forming virus (SFFV) causes rapid erythroleukemia in mice due to expression of its unique envelope glycoprotein, gp55. Erythroid cells expressing SFFV gp55 proliferate in the absence of their normal regulator erythropoietin (Epo) because of constitutive activation of Epo signal transduction pathways. Although SFFV infects many cell types, deregulation of cell growth occurs only when SFFV infects erythroid cells, suggesting that these cells express unique proteins that the virus requires to mediate its biological effects. Not only do erythroid cells express the Epo receptor (EpoR), but those from mice susceptible to SFFV-induced erythroleukemia also express a short form of the receptor tyrosine kinase Stk (sf-Stk). In erythroid cells, SFFV gp55 interacts with the EpoR complex and sf-Stk, leading to activation of the kinase and constitutive activation of signal transducing molecules. In this study, we demonstrate that SFFV gp55 can also deregulate the growth of nonerythroid cells when it is coexpressed with sf-Stk. Expression of SFFV gp55 in rodent fibroblasts engineered to express sf-Stk induced their transformation, as demonstrated by focus formation and anchorage-independent growth in vitro. This transformation by SFFV gp55 requires the kinase activity of sf-Stk and the presence of its extracellular domain but not expression of the EpoR or the tyrosine kinase Jak2, which is required for activation of signal transduction pathways through the EpoR. Thus, expression of SFFV gp55 in nonerythroid cells coexpressing sf-Stk results in their uncontrolled growth, demonstrating a previously unrecognized mechanism for retrovirus transformation of rodent fibroblasts and providing insight into SFFV-induced disease.  相似文献   
86.
87.
88.
Ruscetti  FW; Gallo  RC 《Blood》1981,57(3):379-394
The discovery of T-cell growth factor (TCGF) has made it possible to now routinely grow in tissue culture normal and neoplastic human T cells for long periods and in large amounts. TCGF has been recently purified. It is a small protein released by a subset of mature T cells following lectin-antigen activation, which in turn acts upon other T- cell subsets that have developed specific receptors for TCGF after lectin-antigen stimulation. Thus, release of TCGF and development of receptors for it appear to be obligatory for the clonal expansion of all activated T cells. Unlike normal T cells, neoplastic T cells respond directly to TCGF, requiring no prior in vitro lectin-antigen activation. This has led to the development of several new cell lines from patients with T-cell leukemias and lymphomas. In some cases, these cells become independent of exogenous TCGF by producing their own growth factor, implying a role for TCGF in the continuous proliferation of these cells. These developments necessitate a reevaluation of some concepts of immunoregulation of T-cell activities in terms of production and response to TCGF. In addition, this information has clinical implications. Recent results have shown that a major defect of the athymic nude mouse is the inability to produce TCGF and that some immunosuppressive agents, such as glucocorticosteroids and cyclosporin- A, exert their effects on T cells by disrupting the TCGF-T-cell interaction. Some human immune deficiencies might be due to a failure to respond to or to produce TCGF, which in some cases might be corrected by exogenous TCGF.  相似文献   
89.
90.
Both transforming growth factor beta (TGF beta) and macrophage inflammatory protein 1 alpha (MIP-1 alpha) have been shown to be multifunctional regulators of hematopoiesis that can either inhibit or enhance the growth of hematopoietic progenitor cells (HPC). We report here the spectrum of activities of these two cytokines on different hematopoietic progenitor and stem cell populations, and whether these effects are direct or indirect. MIP-1 alpha enhances interleukin-3 (IL- 3)/and granulocyte-macrophage colony-stimulating factor (GM- CSF)/induced colony formation of normal bone marrow progenitor cells (BMC) and lineage-negative (Lin-) progenitors, but has no effect on G- CSF or CSF-1/induced colony formation. Similarly, TGF beta enhances GM- CSF/induced colony formation of normal BMC and Lin- progenitors. In contrast, TGF beta inhibits IL-3/ and CSF-1/induced colony formation of Lin- progenitors. The effects of MIP-1 alpha and TGF beta on the growth of Lin- progenitors were direct and correlate with colony formation in soft agar. Separation of the Lin- cells into Thy-1 and Thy-1lo subsets showed that the growth of Thy-1lo Lin- cells is directly inhibited by MIP-1 alpha and TGF beta regardless of the cytokine used to stimulate growth (IL-3), GM-CSF, or CSF-1). In contrast, two other stem cell populations (0% to 15% Hoechst 33342/Rhodamine 123 [Ho/Rh123] and Lin- Sca-1+ cells) were markedly inhibited by TGF beta and unaffected by MIP- 1 alpha. Furthermore, MIP-1 alpha has no effect on high proliferative potential colony-forming cells 1 or 2 (HPP-CFC/1 or /2) colony formation in vitro, whereas TGF beta inhibits both HPP-CFC/1 and HPP- CFC/2. Thus, MIP-1 alpha and TGF beta are direct bidirectional regulators of HPC growth, whose effects are dependent on other growth factors present as well as the maturational state of the HPC assayed. The spectrum of their inhibitory and enhancing activities shows overlapping yet distinct effects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号