收费全文 | 90篇 |
免费 | 5篇 |
国内免费 | 1篇 |
妇产科学 | 4篇 |
基础医学 | 8篇 |
临床医学 | 5篇 |
内科学 | 31篇 |
神经病学 | 10篇 |
特种医学 | 2篇 |
外科学 | 9篇 |
综合类 | 1篇 |
药学 | 15篇 |
中国医学 | 1篇 |
肿瘤学 | 10篇 |
2023年 | 1篇 |
2022年 | 11篇 |
2021年 | 3篇 |
2020年 | 2篇 |
2019年 | 4篇 |
2018年 | 2篇 |
2017年 | 2篇 |
2016年 | 2篇 |
2015年 | 4篇 |
2014年 | 6篇 |
2013年 | 3篇 |
2012年 | 10篇 |
2011年 | 4篇 |
2010年 | 4篇 |
2009年 | 2篇 |
2008年 | 5篇 |
2007年 | 5篇 |
2006年 | 4篇 |
2005年 | 2篇 |
2004年 | 4篇 |
2003年 | 4篇 |
2002年 | 4篇 |
1999年 | 1篇 |
1997年 | 2篇 |
1996年 | 1篇 |
1995年 | 3篇 |
1991年 | 1篇 |
Background
Central Europe presents with the highest incidence of sporadic colorectal cancer (CRC) worldwide. As sporadic CRC represents a typical multifactorial disease, it is characterized by intense interaction of the genetic background with the environment. Glutathione S-transferases could act as attractive susceptibility genes for CRC, as they are directly involved in conjugation between glutathione and chemotherapeutics, environmental pollutants and a wide spectrum of xenobiotics.Methods
In this study, we investigated associations of polymorphisms in glutathione S-transferases (GSTs) genes, that is GSTA1, GSTT1, GSTM1 and GSTP1, with CRC in a total of 197 cases and 218 controls originating from the Czech Central European population. Polymorphisms were assessed by polymerase chain reaction/restriction fragment length polymorphism-based methods, allele-specific multiplex and allelic discrimination by real-time polymerase chain reaction.Results
None of investigated polymorphisms showed any associations with CRC, with the exception of GSTP1; where the heterozygote genotype Ile105Val was associated with decreased risk of CRC (P = 0.043).Conclusions
The frequencies observed in our study are in accordance with those from other European Caucasian populations. Based on our studies, examined variability in GST genes is not a major determinant of CRC susceptibility in the Central European population. 相似文献2. Here, we analyzed the effect of microbiota on a non-steroidal anti-inflammatory drug nabumetone.
3. First, we cultivated the drug with the selected gut commensal and probiotic bacteria under both aerobic and anaerobic conditions and analyzed its metabolites by high-performance liquid chromatography (HPLC) with UV detection. To analyze the effect of microbiota on nabumetone pharmacokinetics in vivo, we administered a single oral dose of nabumetone to rodents with intentionally altered gut microbiome - either rats treated for three days with the antibiotic imipenem or to germ-free mice. Plasma levels of its main active metabolite 6 methoxy-2-naphthylacetic acid (6-MNA) were analyzed at pre-specified time intervals using HPLC with UV/fluorescence detection.
4. We found that nabumetone is metabolized by bacteria to its non-active metabolites and that this effect is stronger under anaerobic conditions. Although in vivo, none of the pharmacokinetic parameters of 6-MNA was significantly altered, there was a clear trend towards an increase of the AUC, Cmax and t1/2 in rats with reduced microbiota and germ-free mice. 相似文献