首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8464篇
  免费   544篇
  国内免费   53篇
耳鼻咽喉   123篇
儿科学   175篇
妇产科学   136篇
基础医学   1014篇
口腔科学   271篇
临床医学   734篇
内科学   1801篇
皮肤病学   168篇
神经病学   543篇
特种医学   339篇
外国民族医学   2篇
外科学   1328篇
综合类   140篇
一般理论   5篇
预防医学   591篇
眼科学   382篇
药学   764篇
中国医学   78篇
肿瘤学   467篇
  2024年   10篇
  2023年   109篇
  2022年   216篇
  2021年   406篇
  2020年   262篇
  2019年   333篇
  2018年   419篇
  2017年   279篇
  2016年   342篇
  2015年   336篇
  2014年   492篇
  2013年   590篇
  2012年   839篇
  2011年   836篇
  2010年   479篇
  2009年   339篇
  2008年   529篇
  2007年   505篇
  2006年   383篇
  2005年   312篇
  2004年   240篇
  2003年   249篇
  2002年   193篇
  2001年   43篇
  2000年   28篇
  1999年   38篇
  1998年   27篇
  1997年   16篇
  1996年   17篇
  1995年   17篇
  1994年   13篇
  1993年   14篇
  1992年   8篇
  1991年   13篇
  1990年   6篇
  1989年   15篇
  1988年   15篇
  1987年   8篇
  1986年   8篇
  1985年   7篇
  1984年   5篇
  1982年   9篇
  1981年   4篇
  1980年   5篇
  1979年   6篇
  1978年   7篇
  1977年   6篇
  1976年   8篇
  1975年   9篇
  1974年   7篇
排序方式: 共有9061条查询结果,搜索用时 15 毫秒
141.
In this paper a general framework is presented for morphological modeling of cardiac signals from a signal decomposition perspective. General properties of a desired morphological model are presented and special cases of the model are studied in detail. The presented approach is studied for modeling the morphology of electrocardiogram (ECG) signals. Specifically, three types of ECG modeling techniques, including polynomial spline models, sinusoidal model and a model previously presented by McSharry et al., are studied within this framework. The proposed method is applied to datasets from the PhysioNet ECG database for compression and modeling of normal and abnormal ECG signals. Quantitative and qualitative results of these applications are also presented and discussed.  相似文献   
142.
Metastasis is the leading cause of cancer death, yet it is mechanistically considered a very inefficient process suggesting the presence of some sort of (e.g. systemic) routes for fuelling the process. The pre-metastatic niche formation is described as one such metastasis promoting route. Now, the emerging potentials of tumor-derived microvesicles (TDMVs), not only in formulating the pre-metastatic niche, but also conferring neoplastic phenotypes onto normal cells, has integrated new concepts into the field. Here, we note as an ancillary proposition that, exerting functional disturbances in other sites, TDMVs (we have termed them metastasomes) may aid foundation of the secondary lesions via two seemingly interrelated models: (i) tumor-organ-training (TOTr), training a proper niche for the growth of the disseminated tumor cells; (ii) tumor-organ-targeting (TOTa), contribution to the propagation of the transformed phenotype via direct or indirect (TOTr-mediated disturbed stroma) transformation and/or heightened growth/survival states of the normal resident cells in the secondary organs. Respecting the high content of the RNA molecules (particularly microRNAs) identified in the secretory MVs, they may play crucial parts in such “malignant trait” spreading system. That is, the interactions between tumor tissue-specific RNA signatures, being transferred via metastasomes, and the cell-type/tissue-specific RNA stockrooms in other areas may settle a unique outcome in each organ. Thus, serving as tumor-organ matchmakers, the RNA molecules may also play substantial roles in the seeding and tropism of the process.  相似文献   
143.
Purpose

Functional magnetic resonance imaging (fMRI) in resting state can be used to evaluate the functional organization of the human brain in the absence of any task or stimulus. The functional connectivity (FC) has non-stationary nature and consented to be varying over time. By considering the dynamic characteristics of the FC and using graph theoretical analysis and a machine learning approach, we aim to identify the laterality in cases of temporal lobe epilepsy (TLE).

Methods

Six global graph measures are extracted from static and dynamic functional connectivity matrices using fMRI data of 35 unilateral TLE subjects. Alterations in the time trend of the graph measures are quantified. The random forest (RF) method is used for the determination of feature importance and selection of dynamic graph features including mean, variance, skewness, kurtosis, and Shannon entropy. The selected features are used in the support vector machine (SVM) classifier to identify the left and right epileptogenic sides in patients with TLE.

Results

Our results for the performance of SVM demonstrate that the utility of dynamic features improves the classification outcome in terms of accuracy (88.5% for dynamic features compared with 82% for static features). Selecting the best dynamic features also elevates the accuracy to 91.5%.

Conclusion

Accounting for the non-stationary characteristics of functional connectivity, dynamic connectivity analysis of graph measures along with machine learning approach can identify the temporal trend of some specific network features. These network features may be used as potential imaging markers in determining the epileptogenic hemisphere in patients with TLE.

  相似文献   
144.
Journal of NeuroVirology - The novel coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has instigated a global pandemic as a formidable...  相似文献   
145.
Bone marrow-derived mesenchymal stem cells (MSCs) have the capacity to regenerate renal tubule epithelia and repair renal function without fusing with resident tubular cells. The goal of the present project was to investigate the role of MSCs secreted cytokines on tubule cell viability and regeneration after a toxic insult, using a conditionally immortalized human proximal tubule epithelial cell (ciPTEC) line. Gentamicin was used to induce nephrotoxicity, and cell viability and migration were studied in absence and presence of human MSC-conditioned medium (hMSC-CM) i.e. medium containing soluble factors produced and secreted by MSCs. Exposure of ciPTEC to 0–3000 μg/ml gentamicin for 24 h caused a significant dose-dependent increase in cell death. We further demonstrated that the nephrotoxic effect of 2000 μg/ml gentamicin was recovered partially by exposing cells to hMSC-CM. Moreover, exposure of ciPTEC to gentamicin (1500–3000 μg/ml) for 7 days completely attenuated the migratory capacity of the cells. In addition, following scrape-wounding, cell migration of both untreated and gentamicin-exposed cells was increased in the presence of hMSC-CM, as compared to exposures to normal medium, indicating improved cell recovery. Our data suggest that cytokines secreted by MSCs stimulate renal tubule cell regeneration after nephrotoxicity.  相似文献   
146.
PurposeTo compare image quality in selective intracoronary contrast-injected computed tomography angiography (Selective-CTA) with that in conventional intravenous contrast-injected CTA (IV-CTA).Materials and MethodsSix pigs (35 to 40 kg) underwent both IV-CTA using an intravenous injection (60 mL) and Selective-CTA using an intracoronary injection (20 mL) through a guide-wire during/after percutaneous coronary intervention. Images of the common coronary artery were acquired. Scans were performed using a combined machine comprising an invasive coronary angiography suite and a 320-channel multi-slice CT scanner. Quantitative image quality parameters of CT attenuation, image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), mean lumen diameter (MLD), and mean lumen area (MLA) were measured and compared. Qualitative analysis was performed using intraclass correlation coefficient (ICC), which was calculated for analysis of interobserver agreement.ResultsQuantitative image quality, determined by assessing the uniformity of CT attenuation (399.06 vs. 330.21, p<0.001), image noise (24.93 vs. 18.43, p<0.001), SNR (16.43 vs. 18.52, p=0.005), and CNR (11.56 vs. 13.46, p=0.002), differed significantly between IV-CTA and Selective-CTA. MLD and MLA showed no significant difference overall (2.38 vs. 2.44, p=0.068, 4.72 vs. 4.95, p=0.078). The density of contrast agent was significantly lower for selective-CTA (13.13 mg/mL) than for IV-CTA (400 mg/mL). Agreement between observers was acceptable (ICC=0.79±0.08).ConclusionOur feasibility study in swine showed that compared to IV-CTA, Selective-CTA provides better image quality and requires less iodine contrast medium.  相似文献   
147.
148.
Objectives:Magnetic resonance angiography (MRA) has been established as an important imaging method in cardiac ablation procedures. In pulmonary vein (PV) isolation procedures, MRA has the potential to minimize the risk of severe complications, such as atrio-esophageal fistula, by providing detailed information on esophageal position relatively to cardiac structures. However, traditional non-gated, first-pass (FP) MRA approaches have several limitations, such as long breath-holds, non-uniform signal intensity throughout the left atrium (LA), and poor esophageal visualization. The aim of this observational study was to validate a respiratory-navigated, ECG-gated (EC), saturation recovery-prepared MRA technique for simultaneous imaging of LA, LA appendage, PVs, esophagus, and adjacent anatomical structures.Methods:Before PVI, 106 consecutive patients with a history of AF underwent either conventional FP-MRA (n = 53 patients) or our new EC-MRA (n = 53 patients). Five quality scores (QS) of LA and esophagus visibility were assessed by two experienced readers. The non-parametric Mann–Whitney U-test was used to compare QS between FP-MRA and EC-MRA groups, and linear regression was applied to assess clinical contributors to image quality.Results:EC-MRA demonstrated significantly better image quality than FP-MRA in every quality category. Esophageal visibility using the new MRA technique was markedly better than with the conventional FP-MRA technique (median 3.5 [IQR 1] vs median 1.0, p < 0.001). In contrast to FP-MRA, overall image quality of EC-MRA was not influenced by heart rate.Conclusion:Our ECG-gated, respiratory-navigated, saturation recovery-prepared MRA technique provides significantly better image quality and esophageal visibility than the established non-gated, breath-holding FP-MRA. Image quality of EC-MRA technique has the additional advantage of being unaffected by heart rate.Advances in knowledge:Detailed information of cardiac anatomy has the potential to minimize the risk of severe complications and improve success rates in invasive electrophysiological studies. Our novel ECG-gated, respiratory-navigated, saturation recovery-prepared MRA technique provides significantly better image quality of LA and esophageal structures than the traditional first-pass algorithm. This new MRA technique is robust to arrhythmia (tachycardic, irregular heart rates) frequently observed in AF patients.  相似文献   
149.
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号