全文获取类型
收费全文 | 1467345篇 |
免费 | 107738篇 |
国内免费 | 2434篇 |
专业分类
耳鼻咽喉 | 18547篇 |
儿科学 | 46118篇 |
妇产科学 | 38849篇 |
基础医学 | 214562篇 |
口腔科学 | 38667篇 |
临床医学 | 138866篇 |
内科学 | 290141篇 |
皮肤病学 | 30216篇 |
神经病学 | 122508篇 |
特种医学 | 55729篇 |
外国民族医学 | 278篇 |
外科学 | 210333篇 |
综合类 | 27958篇 |
现状与发展 | 4篇 |
一般理论 | 734篇 |
预防医学 | 118987篇 |
眼科学 | 32908篇 |
药学 | 106051篇 |
42篇 | |
中国医学 | 2313篇 |
肿瘤学 | 83706篇 |
出版年
2021年 | 14231篇 |
2019年 | 14303篇 |
2018年 | 18725篇 |
2017年 | 14194篇 |
2016年 | 15518篇 |
2015年 | 17931篇 |
2014年 | 25065篇 |
2013年 | 37200篇 |
2012年 | 52270篇 |
2011年 | 55277篇 |
2010年 | 31782篇 |
2009年 | 30314篇 |
2008年 | 51351篇 |
2007年 | 54614篇 |
2006年 | 53885篇 |
2005年 | 52816篇 |
2004年 | 50531篇 |
2003年 | 47815篇 |
2002年 | 46211篇 |
2001年 | 57707篇 |
2000年 | 58306篇 |
1999年 | 49848篇 |
1998年 | 15793篇 |
1997年 | 14119篇 |
1996年 | 14320篇 |
1995年 | 13429篇 |
1994年 | 12413篇 |
1993年 | 11695篇 |
1992年 | 39061篇 |
1991年 | 38474篇 |
1990年 | 37121篇 |
1989年 | 35907篇 |
1988年 | 33297篇 |
1987年 | 32575篇 |
1986年 | 31087篇 |
1985年 | 29379篇 |
1984年 | 22737篇 |
1983年 | 19886篇 |
1982年 | 12240篇 |
1979年 | 21343篇 |
1978年 | 15839篇 |
1977年 | 13183篇 |
1976年 | 12203篇 |
1975年 | 13092篇 |
1974年 | 15863篇 |
1973年 | 15606篇 |
1972年 | 14676篇 |
1971年 | 13691篇 |
1970年 | 12883篇 |
1969年 | 12142篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
Nicholas Ebert Michael McGinnis William Johnson Evelyn M. Kuhn Michael E. Mitchell James S. Tweddell Ronald K. Woods 《Seminars in thoracic and cardiovascular surgery》2021,33(2):459-465
Graphical abstract summarizing the overall results of our study comparing reintervention for a main or central branch pulmonary artery reconstruction site and various patch materials. Autologous pericardium was associate with the lowest reintervention and was free. Multivariable analysis demonstrated lack of superiority of homograft branch patch, which clearly has a much higher cost. 相似文献
52.
53.
Caroline E Blevins Natalie A Celeste James O Marx 《Journal of the American Association for Laboratory Animal Science》2021,60(3):289
Oxygen supplementation is rarely considered when anesthetizing laboratory mice, despite reports that mice become profoundly hypoxic under anesthesia. Little is known about the effects of hypoxia on anesthetic performance. This article focuses on the effects of oxygen supplementation on physiologic parameters and depth of anesthesia in male and female C57BL/6 mice. Anesthesia was performed via common injectable anesthetic protocols and with isoflurane. Mice anesthetized with injectable anesthesia received one of 3 drug protocols. Low-dose ketamine/xylazine (100/8 mg/kg) was chosen to provide immobilization of mice, suitable for imaging procedures. Medium-dose ketamine/xylazine/acepromazine (100/10/1 mg/kg) was chosen as a dose that has been recommended for surgical procedures. High-dose ketamine/xylazine/acepromazine (150/12/3 mg/kg) was chosen after pilot studies to provide a long duration of a deep plane of anesthesia. We also tested the effects of oxygen supplementation on the minimum alveolar concentration (MAC) of isoflurane in mice. Mice breathed supplemental 100% oxygen, room air, or medical air with 21% oxygen. Anesthetized mice that did not receive supplemental oxygen all became hypoxic, while hypoxia was prevented in mice that received oxygen. Oxygen supplementation did not affect the MAC of isoflurane. At the high injectable dose, all mice not receiving oxygen supplementation died while all mice receiving oxygen supplementation survived. At low and medium doses, supplemental oxygen reduced the duration of the surgical plane of anesthesia (low dose with oxygen: 22 ± 14 min; low dose without supplementation: 29 ± 18 min; medium dose with oxygen: 43 ± 18 min; medium dose without supplementation: 61 ± 27 min). These results suggest that mice anesthetized with injectable and inhalant anesthesia without supplemental oxygen are routinely hypoxic. This hypoxia prolongs the duration of anesthesia with injectable drug protocols and affects survival at high doses of injectable anesthetics. Because of variable responses to injectable anesthetics in mice, oxygen supplementation is recommended for all anesthetized mice.Anesthesia is frequently required for mice used in biomedical research, but anecdotal communications suggest that mice receive significantly less anesthetic monitoring and supportive care than do other research species. Monitoring of anesthetized mice is often minimal due to lack of specialized monitoring equipment, and the fact that many rodent surgeries are performed by a single person who acts as both surgeon and anesthetist. Supportive care during anesthesia is limited by a lack of supporting experimental evidence. The lack of monitoring and supportive care may increase the mortality rate in anesthetized mice.Previous studies have shown that mice anesthetized with both inhalant and injectable anesthetics without supplemental oxygen become profoundly hypoxic.1,6,8,9,19,26,39,41 While mice in these studies appear to recover normally from anesthesia, little is known about the effects of hypoxia on physiologic parameters, anesthetic depth, and perioperative mortality. Respiratory complications, including hypoxia and hypoventilation, are second only to cardiovascular complications as a cause of perioperative mortality in veterinary species, and in humans, hypoxemia accounts for over 50% of deaths under anesthesia.4 To mitigate the risk of hypoxia under anesthesia, oxygen supplementation is commonly provided to anesthetized humans and animals, but is rarely provided to mice in research settings.6,19All anesthetics affect respiratory function; ketamine and isoflurane are particularly known to cause respiratory depression in mice and rats by impairing the normal physiologic responses to hypoxemia and hypercapnia.9,12,20,23,28 The peripheral chemoreceptors, primarily in the carotid body, normally sense dropping arterial partial pressure of oxygen (PaO2) while central chemoreceptors located in the medulla sense changes in pH and rising partial pressure of carbon dioxide (PaCO2).22,23,29,40 Both sets of chemoreceptors compensate by initiating increases in respiratory rate and tidal volume.23,28,31,34,40 Injectable and inhalant anesthetic agents depress the function of these chemoreceptors, preventing the increases in respiration that compensate for hypoxia and hypoventilation.22,29Pulse oximetry is commonly used to monitor peripheral oxygen saturation and detect the presence of hypoxia. Pulse oximeters use the difference in light absorption of oxygenated hemoglobin and deoxygenated hemoglobin in arterial blood to provide an estimate of arterial oxygen content, abbreviated as SpO2.17 An SpO2 of less than 90% to 95% generally corresponds to a PaO2 of less than 60 to 80 mm Hg, which is considered hypoxic in most species of mammals.7,17 Because of the small size of mice, species-specific pulse oximetry equipment is necessary to obtain this measurement. Therefore, measurement of SpO2 in anesthetized mice is not routinely performed, meaning that hypoxia under anesthesia generally goes unrecognized, and is likely more common than is appreciated by our field.The purpose of this study was to confirm that mice become hypoxic after receiving a ketamine/xylazine based anesthetic admixture or isoflurane, which are commonly used anesthetics in mice and to investigate the effects of oxygen supplementation on anesthetic depth, physiologic values, and anesthetic requirements in these mice.9,35 We hypothesized that mice not receiving supplemental oxygen would be hypoxic, as indicated by lower SpO2 while anesthetized, and that supplemental oxygen would correct this hypoxia. We also hypothesized that oxygen supplementation would increase the doses of injectable and inhalant anesthesia necessary to maintain mice at a surgical plane of anesthesia. 相似文献
54.
55.
K. Vecchiato A. Egloff O. Carney A. Siddiqui E. Hughes L. Dillon K. Colford E. Green R.P.A.G. Texeira A.N. Price G. Ferrazzi J.V. Hajnal D.W. Carmichael L. Cordero-Grande J. OMuircheartaigh 《AJNR. American journal of neuroradiology》2021,42(4):774
BACKGROUND AND PURPOSE:Head motion causes image degradation in brain MR imaging examinations, negatively impacting image quality, especially in pediatric populations. Here, we used a retrospective motion correction technique in children and assessed image quality improvement for 3D MR imaging acquisitions.MATERIALS AND METHODS:We prospectively acquired brain MR imaging at 3T using 3D sequences, T1-weighted MPRAGE, T2-weighted TSE, and FLAIR in 32 unsedated children, including 7 with epilepsy (age range, 2–18 years). We implemented a novel motion correction technique through a modification of k-space data acquisition: Distributed and Incoherent Sample Orders for Reconstruction Deblurring by using Encoding Redundancy (DISORDER). For each participant and technique, we obtained 3 reconstructions as acquired (Aq), after DISORDER motion correction (Di), and Di with additional outlier rejection (DiOut). We analyzed 288 images quantitatively, measuring 2 objective no-reference image quality metrics: gradient entropy (GE) and MPRAGE white matter (WM) homogeneity. As a qualitative metric, we presented blinded and randomized images to 2 expert neuroradiologists who scored them for clinical readability.RESULTS:Both image quality metrics improved after motion correction for all modalities, and improvement correlated with the amount of intrascan motion. Neuroradiologists also considered the motion corrected images as of higher quality (Wilcoxon z = −3.164 for MPRAGE; z = −2.066 for TSE; z = −2.645 for FLAIR; all P < .05).CONCLUSIONS:Retrospective image motion correction with DISORDER increased image quality both from an objective and qualitative perspective. In 75% of sessions, at least 1 sequence was improved by this approach, indicating the benefit of this technique in unsedated children for both clinical and research environments.Head motion is a common cause of image degradation in brain MR imaging. Motion artifacts negatively impact MR image quality and therefore radiologists’ capacity to read the images, ultimately affecting patient clinical care.1 Motion artifacts are more common in noncompliant patients,2 but even in compliant adults, intrascan movement is reported in at least 10% of cases.3 For children who require high-resolution MR images, obtaining optimal image quality can be challenging, owing to the requirement to stay still over long durations needed for acquisition.4 Sedation can be an option, but it carries higher risks, costs, and preparation and recovery time.5In conditions such as intractable focal epilepsy, identification of an epileptogenic lesion is clinically important to guide surgical treatment. However, these lesions can be visually subtle, particularly in children in whom subtle cortical dysplasias are more common.6 Dedicated epilepsy MR imaging protocols use high-resolution 3D sequences to allow better cortical definition and free reformatting of orientation but involve acquisition times in the order of minutes, so data collection becomes more sensitive to motion.7For children in particular, multiple strategies are available for minimizing motion during MR examinations. Collaboration with play specialists using mock scanners and training or projecting a cartoon are good approaches to reduce anxiety.8,9 These tools are not always available in clinical radiology and, even with these strategies, motion can still be an issue.10 Different scanning approaches to correct for intrascan motion have been proposed. Broadly, prospective methods track head motion in real time and modify the acquisition directions accordingly.11 These approaches are applicable to a wide range of sequences but require optical systems with external tracking markers, sometimes uncomfortable or impractical, and extra setup can ultimately result in longer examinations. Furthermore, these approaches may also not be robust to continuous motion.11-13 Retrospective techniques have also been proposed, in some cases relying on imaging navigators that are not compatible with all standard sequences or contrasts.12Here, we use a more general retrospective motion correction technique: Distributed and Incoherent Sample Orders for Reconstruction Deblurring by using Encoding Redundancy (DISORDER). In this method, k-space samples are reordered to enable retrospective motion correction during image reconstruction.14 Our hypothesis is that DISORDER improves clinical MR imaging quality and readability. To assess its use for clinical sequences, we acquired a dedicated epilepsy MR imaging protocol in 32 children across a wide age range. We used both objective image quality metrics and expert neuroradiologist ratings to evaluate the outcome after motion correction. 相似文献
56.
57.
A. Didier-Laurent S. De Gaalon S. Ferhat S.-D. Mihailescu D. Maltete D. Laplaud R. Lefaucheur E. Guegan-Massardier L. Grangeon 《Revue neurologique》2021,177(6):676-682
Background/ObjectiveOccurrence of post-dural puncture headache (PDPH) after diagnostic lumbar puncture (LP) for idiopathic intracranial hypertension (IIH) may seem very unlikely in clinical practice. Nevertheless, it has been suggested by several studies, mainly in sub-group analyses. We aimed to evaluate the prevalence of PDPH in an IIH population and determine any eventual predictive factors of PDPH occurrence.MethodsWe conducted a retrospective multiple-center observational study. All newly diagnosed IIH patients who met the International Classification of Headache Disorders (ICHD-3) or the Dandy modified criteria were included from three different French hospitals. They all underwent LP following the same process with the same type of needle. We recorded PDPH occurring within five days after LP, as defined by ICHD-3 criteria.ResultsSeventy-four IIH patients were recruited, of whom 23 (31%) presented with PDPH. Neither classical risk factors for PDPH such as body mass index, age or gender, nor cerebrospinal fluid opening pressure, or specific IIH features were associated with occurrence of PDPH.ConclusionPDPH can occur after LP in IIH patients. Clinicians should be aware of this possible event during the IIH diagnosis assessment and should not automatically reconsider IIH diagnosis. PDPH prevention using an atraumatic needle and dedicated PDPH treatment seem relevant in IIH patients. 相似文献
58.
Alireza Aminsharifi Lauren E. Howard Christopher L. Amling William J. Aronson Matthew R. Cooperberg Christopher J. Kane Martha K. Terris Thomas J. Polascik Stephen J. Freedland 《Clinical genitourinary cancer》2019,17(1):e140-e149
Purpose
To investigate the preoperative use of combination metformin and statin versus monotherapy on biochemical recurrence (BCR) after radical prostatectomy (RP) in diabetic men.Patients and Methods
Data of 843 diabetic men who underwent RP were stratified on the basis of preoperative use of no drug or of metformin, statin, or both. Multivariable Cox models were used to test the association between treatment and BCR. In a secondary analysis, models were stratified by race and body mass index (BMI) and further adjusted for glycated hemoglobin (HbA1c).Results
A total of 259 men (31%) received statin therapy, 94 (11%) metformin, 307 (36%) metformin + statin, and 183 (22%) neither. Five-year BCR-free survival rates were 75% in metformin only versus 75% in metformin + statin versus 60% in statin versus 68% in no drug groups (log-rank, P = .003). On multivariable analysis, preoperative statin use was associated with increased BCR risk versus men receiving neither drug (hazard ratio [HR] = 1.84; 95% confidence interval [CI], 1.28-2.64). Metformin alone (HR 0.88; 95% CI, 0.53-1.47) and metformin + statin (HR 0.88; 95% CI, 0.58-1.33) were unrelated to BCR risks. In secondary analysis, the association between statin use and higher BCR risk was similar regardless of race, but was stronger among men with BMI ≥ 30 kg/m2 (HR 3.12; 95% CI, 1.70-5.72). These results were largely unchanged after adjusting for HbA1c.Conclusion
Among diabetic men undergoing RP, preoperative statin use was associated with worse BCR risk, especially among men with a high BMI, but these associations may be mitigated by concomitant use of metformin. If validated in future findings, research is needed to understand the basis for these associations. 相似文献59.
60.
Benjamin J. Oldfield Jeanette M. Tetrault Kirsten M. Wilkins E. Jennifer Edelman Noah A. Capurso 《Substance Abuse》2020,41(1):29-34
AbstractBackground: Opioid overdose deaths constitute a public health crisis in the United States. Strategies for reducing opioid-related harm are underutilized due in part to clinicians’ low knowledge about harm reduction theory and limited preparedness to prescribe naloxone. Educational interventions are needed to improve knowledge and attitudes about, and preparedness to address, opioid overdoses among medical students. Methods: Informed by the Department of Veterans Affairs’ Overdose Education and Naloxone Distribution (OEND) program and narrative medicine, we developed and led a mandatory workshop on harm reduction for clerkship medical students. Using validated scales, we assessed students’ knowledge and attitudes about, and preparedness to address, opioid overdoses before the workshop and 6 weeks after. Results: Of 75 participating students from February through December 2017, 55 (73%) completed pre-workshop and 38 (51%) completed both pre- and post-workshop surveys. At baseline, 40 (73%) encountered patients with perceived at-risk opioid use in the previous 6 weeks, but only 11 (20%) recalled their teams prescribing naloxone for overdose prevention. Among those completing both surveys, knowledge about and preparedness to prevent overdose showed large improvement (Cohen’s d?=?0.85, P?<?.001; Cohen’s d?=?1.24, P?<?.001, respectively) and attitudes showed moderate improvement (Cohen’s d?=?0.32, P = .04). Discussion: Educational interventions grounded in harm reduction theory can increase students’ knowledge and attitudes about, and preparedness to address, opioid overdoses. 相似文献