首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   827篇
  免费   37篇
  国内免费   2篇
耳鼻咽喉   8篇
儿科学   6篇
妇产科学   3篇
基础医学   65篇
口腔科学   40篇
临床医学   49篇
内科学   203篇
神经病学   136篇
特种医学   17篇
外科学   211篇
综合类   3篇
预防医学   7篇
眼科学   3篇
药学   79篇
肿瘤学   36篇
  2024年   1篇
  2023年   11篇
  2022年   13篇
  2021年   31篇
  2020年   13篇
  2019年   23篇
  2018年   17篇
  2017年   16篇
  2016年   18篇
  2015年   16篇
  2014年   17篇
  2013年   26篇
  2012年   43篇
  2011年   72篇
  2010年   37篇
  2009年   36篇
  2008年   60篇
  2007年   59篇
  2006年   63篇
  2005年   70篇
  2004年   50篇
  2003年   43篇
  2002年   38篇
  2001年   10篇
  2000年   5篇
  1999年   11篇
  1998年   8篇
  1997年   12篇
  1996年   6篇
  1995年   3篇
  1994年   5篇
  1993年   4篇
  1992年   2篇
  1991年   4篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1978年   2篇
  1975年   1篇
  1968年   1篇
  1963年   1篇
  1962年   1篇
排序方式: 共有866条查询结果,搜索用时 15 毫秒
851.
Methamphetamine continues to be the most widely abused drug in Japan. Chronic methamphetamine users show psychiatric signs, including methamphetamine psychosis. Monoamine oxidase A (MAOA) is one of the major enzymes responsible for the degradation of neurotransmitters. Abnormalities in MAO levels have been related to a wide range of psychiatric disorders. We examined whether or not the MAOA-u variable-number tandem repeat (VNTR) has a functional polymorphism in methamphetamine psychosis and whether or not such a polymorphism is related to the prolongation of psychosis. As expected, there was a significant difference in the MAOA-u VNTR between males with persistent versus transient methamphetamine psychosis (p = 0.018, odds ratio (OR) = 2.76, 95% CI: 1.18–6.46). Our results suggest that the high-activity allele class of MAOA-u VNTR in males may be involved in susceptibility to a persistent course of methamphetamine psychosis. We found no differences among females. The sample size of females with methamphetamine psychosis was too small to have significant analysis.  相似文献   
852.
853.
854.
855.
856.
OBJECTIVES: Angiotensin II plays a crucial role in the induction of oxidative stress and the pathogenesis of cardiovascular and renal diseases, and the beneficial mechanisms of angiotensin II receptor 1 blockers (ARBs) are multifactorial. We investigated the receptor-independent protective role of an ARB using primary-cultured mesangial cells from angiotensin II receptor 1 knockout or wild-type mice and a highly lipophilic ARB, telmisartan. METHODS AND RESULTS: Intracellular reactive oxygen species were estimated using a fluorogenic probe, CM-H2DCFDA. Non-angiotensin II-induced reactive oxygen species production was generated by exposing cells to hydrogen peroxide alone or after treatment with telmisartan. Flow cytometry analysis showed that angiotensin II induced an increase in oxidant production in a dose-dependent manner in wild-type cells, but not in knockout cells. In contrast, hydrogen peroxide induced oxidative stress in both wild-type and knockout cells. Interestingly, telmisartan attenuated the oxidative stress induced by hydrogen peroxide in both cells, suggesting that it acted via a receptor-independent antioxidant effect. Intracellular concentrations of telmisartan were confirmed by high-performance liquid chromatography analysis. Expression of plasminogen activator inhibitor 1, which is stimulated by oxidative stress, was also attenuated by telmisartan in a receptor-independent as well as receptor-dependent manner. Telmisartan did not change expression levels of antioxidative enzymes such as catalase or glutathione peroxidase. Furthermore, the amelioration of oxidative stress by telmisartan did not involve the peroxisome proliferator-activated receptor-gamma pathway. CONCLUSIONS: Telmisartan inhibits intracellular oxidative stress, at least in part, in a receptor-independent manner, possibly owing to its lipophilic and antioxidant structure.  相似文献   
857.
The selective formation of E- or Z-isomers is an important process in natural product metabolism. We show that the subunit composition of an enzyme can alter the geometrical composition of the enzymatic products. Hinokiresinol synthase, purified from Asparagus officinalis cell cultures, is responsible for the conversion of (7E,7′E)-4-coumaryl 4-coumarate to (Z)-hinokiresinol, the first step in norlignan formation. The protein is most likely a heterodimer composed of two distinct subunits, which share identity with members of the phloem protein 2 gene superfamily. Interestingly, each recombinant subunit of hinokiresinol synthase expressed in Escherichia coli solely converted (7E,7′E)-4-coumaryl 4-coumarate to the unnatural (E)-hinokiresinol, the E-isomer of (Z)-hinokiresinol. By contrast, a mixture of recombinant subunits catalyzed the formation of (Z)-hinokiresinol from the same substrate.  相似文献   
858.
859.
Rho-GTPase has been implicated in the apoptosis of many cell types, including neurons, but the mechanism by which it acts is not fully understood. Here, we investigate the roles of Rho and ROCK in apoptosis during transplantation of embryonic stem cell-derived neural precursor cells. We find that dissociation of neural precursors activates Rho and induces apoptosis. Treatment with the Rho inhibitor C3 exoenzyme and/or the ROCK inhibitor Y-27632 decreases the amount of dissociation-induced apoptosis (anoikis) by 20-30%. Membrane blebbing, which is an early morphological sign of apoptosis; cleavage of caspase-3; and release of cytochrome c from the mitochondria are also reduced by ROCK inhibition. These results suggest that dissociation of neural precursor cells elicits an intrinsic pathway of cell death that is at least partially mediated through the Rho/ROCK pathway. Moreover, in an animal transplantation model, inhibition of Rho and/or ROCK suppresses acute apoptosis of grafted cells. After transplantation, tumor necrosis factor-alpha and pro-nerve growth factor are strongly expressed around the graft. ROCK inhibition also suppresses apoptosis enhanced by these inflammatory cytokines. Taken together, these results indicate that inhibition of Rho/ROCK signaling may improve survival of grafted cells in cell replacement therapy.  相似文献   
860.
In recent years, the focus of interest on the role of the renin-angiotensin system (RAS) in the pathophysiology of hypertension and organ injury has changed to a major emphasis on the role of the local RAS in specific tissues. In the kidney, all of the RAS components are present and intrarenal angiotensin II (Ang II) is formed by independent multiple mechanisms. Proximal tubular angiotensinogen, collecting duct renin, and tubular angiotensin II type 1 (AT1) receptors are positively augmented by intrarenal Ang II. In addition to the classic RAS pathways, prorenin receptors and chymase are also involved in local Ang II formation in the kidney. Moreover, circulating Ang II is actively internalized into proximal tubular cells by AT1 receptor-dependent mechanisms. Consequently, Ang II is compartmentalized in the renal interstitial fluid and the proximal tubular compartments with much higher concentrations than those existing in the circulation. Recent evidence has also revealed that inappropriate activation of the intrarenal RAS is an important contributor to the pathogenesis of hypertension and renal injury. Thus, it is necessary to understand the mechanisms responsible for independent regulation of the intrarenal RAS. In this review, we will briefly summarize our current understanding of independent regulation of the intrarenal RAS and discuss how inappropriate activation of this system contributes to the development and maintenance of hypertension and renal injury. We will also discuss the impact of antihypertensive agents in preventing the progressive increases in the intrarenal RAS during the development of hypertension and renal injury.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号