首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4369472篇
  免费   340309篇
  国内免费   14801篇
耳鼻咽喉   60445篇
儿科学   139830篇
妇产科学   114502篇
基础医学   668134篇
口腔科学   118266篇
临床医学   398421篇
内科学   793444篇
皮肤病学   108100篇
神经病学   369501篇
特种医学   169718篇
外国民族医学   753篇
外科学   657103篇
综合类   121330篇
现状与发展   24篇
一般理论   2618篇
预防医学   361585篇
眼科学   101078篇
药学   308332篇
  26篇
中国医学   11986篇
肿瘤学   219386篇
  2021年   56481篇
  2020年   35996篇
  2019年   59100篇
  2018年   74759篇
  2017年   57224篇
  2016年   63390篇
  2015年   76369篇
  2014年   110714篇
  2013年   176324篇
  2012年   125385篇
  2011年   130088篇
  2010年   126387篇
  2009年   128024篇
  2008年   116120篇
  2007年   123437篇
  2006年   132173篇
  2005年   126243篇
  2004年   127404篇
  2003年   117593篇
  2002年   106791篇
  2001年   166989篇
  2000年   162059篇
  1999年   148714篇
  1998年   71726篇
  1997年   67657篇
  1996年   65669篇
  1995年   61089篇
  1994年   54998篇
  1993年   51043篇
  1992年   106635篇
  1991年   101394篇
  1990年   97258篇
  1989年   94834篇
  1988年   87156篇
  1987年   85314篇
  1986年   80209篇
  1985年   78367篇
  1984年   65408篇
  1983年   58205篇
  1982年   47202篇
  1981年   43869篇
  1980年   41093篇
  1979年   55114篇
  1978年   44760篇
  1977年   39985篇
  1976年   36845篇
  1975年   36816篇
  1974年   39615篇
  1973年   37758篇
  1972年   35367篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
51.
Introduction: Major Depressive Disorder (MDD) and General Anxiety Disorder (GAD) significantly contribute to the global burden of disease. Vilazodone, a combined serotonin reuptake inhibitor and 5-HT1A partial agonist, is an approved therapy for the treatment of MDD and which has been further investigated for GAD.

Areas covered: This article covers the pharmacokinetics and pharmacodynamics of vilazodone and provides an evaluation of the clinical usefulness of vilazodone for the treatment of MDD and anxiety disorders. A literature search was performed using PubMed/MEDLINE, Web of Science and the Cochrane Library.

Expert opinion: Studies have shown that vilazodone is significantly superior to placebo. However, vilazodone cannot as yet be recommended as a first-line treatment option for MDD as it is unclear whether the drug’s dual mechanism of action provides greater efficacy than prevailing treatment options. Moreover, more phase IV studies are needed to establish its efficacy and long-term safety in larger and more diverse populations. Although vilazodone may have an additional advantage for the treatment of anxiety symptoms in MDD, here also additional studies are required to confirm its efficacy over and above SSRI alternatives and other antidepressant treatments. Therefore, presently, vilazodone should be considered as a second- or third-line treatment option for MDD and GAD.  相似文献   

52.
Objective: To assess the quality of images and video clips of fetal central nervous (CNS) structures obtained by ultrasound and transmitted via tele-ultrasound from Brazil to Australia.

Methods: In this cross-sectional study, 15 normal singleton pregnant women between 20 and 26 weeks were selected. Fetal CNS structures were obtained by images and video clips. The exams were transmitted in real-time using a broadband internet and an inexpensive video streaming device. Four blinded examiners evaluated the quality of the exams using the Likert scale. We calculated the mean, standard deviation, mean difference, and p values were obtained from paired t tests.

Results: The quality of the original video clips was slightly better than that observed by the transmitted video clips; mean difference considering all observers = 0.23 points. In 47/60 comparisons (78.3%; 95% CI?=?66.4–86.9%) the quality of the video clips were judged to be the same. In 182/240 still images (75.8%; 95% CI?=?70.0–80.8%) the scores of transmitted image were considered the same as the original.

Conclusion: We demonstrated that long distance tele-ultrasound transmission of fetal CNS structures using an inexpensive video streaming device provided images of subjective good quality.  相似文献   
53.
54.
Climate change is increasing global temperatures and intensifying the frequency and severity of extreme heat waves. How organisms will cope with these changes depends on their inherent thermal tolerance, acclimation capacity, and ability for evolutionary adaptation. Yet, the potential for adaptation of upper thermal tolerance in vertebrates is largely unknown. We artificially selected offspring from wild-caught zebrafish (Danio rerio) to increase (Up-selected) or decrease (Down-selected) upper thermal tolerance over six generations. Selection to increase upper thermal tolerance was also performed on warm-acclimated fish to test whether plasticity in the form of inducible warm tolerance also evolved. Upper thermal tolerance responded to selection in the predicted directions. However, compared to the control lines, the response was stronger in the Down-selected than in the Up-selected lines in which evolution toward higher upper thermal tolerance was slow (0.04 ± 0.008 °C per generation). Furthermore, the scope for plasticity resulting from warm acclimation decreased in the Up-selected lines. These results suggest the existence of a hard limit in upper thermal tolerance. Considering the rate at which global temperatures are increasing, the observed rates of adaptation and the possible hard limit in upper thermal tolerance suggest a low potential for evolutionary rescue in tropical fish living at the edge of their thermal limits.

Globally, both mean and extreme environmental temperatures are increasing due to climate change with mean temperatures predicted to increase by 0.3–4.8 °C by the end of the century (1, 2). Aquatic ectotherms are particularly vulnerable to rising temperatures as their body temperature closely tracks the environmental temperature (3). These organisms can avoid thermal stress by migrating to cooler waters, acclimating, and/or adapting genetically (46). For species with a limited dispersal ability (e.g., species from shallow freshwater habitats; ref. 7), acclimation and evolutionary adaptation are the only possible strategies. Furthermore, for ectotherms living at the edge of their upper thermal limits, an increase in extreme temperatures may generate temperature peaks that exceed physiological limits and cause high mortality (5, 810). Although this is expected to cause strong selection toward higher upper thermal tolerance, it is largely unknown, particularly within vertebrates, whether and at what rate organisms may adapt by evolving their thermal limits (1114). These are important issues because constrained or limited evolvability (15) of upper thermal tolerance could lead to population extinctions as climate change increases the severity of heat waves.Ectotherms can also increase their thermal limits through physiological and biochemical adjustments, in a process known as thermal acclimation when they are exposed to elevated temperatures for a period of time (16, 17). Thermal acclimation, sometimes called thermal compensation, is here used interchangeably with the term physiological plasticity as outlined by Seebacher et al. (18). In the wild, individuals may experience days or weeks of warmer temperatures prior to a thermal extreme. Through physiological plasticity, the severity of an ensuing thermal extreme may be reduced, thus increasing the chance for survival (19). Furthermore, in some cases, adaptation can be accelerated by plasticity (2022). This requires that the physiological mechanisms responsible for acclimation are also (at least partly) involved in the acute response; that is, that there is a positive genetic correlation between physiological plasticity and (acute) upper thermal tolerance. It is therefore crucial to quantify the evolutionary potential of upper thermal tolerance of fish populations threatened by climate change (23, 24) and to understand the link between the evolutionary response of upper thermal tolerance and physiological plasticity.Previously detected evolution of upper thermal tolerance generally points toward a slow process (12, 13, 2531). However, estimates of the evolutionary potential in upper thermal tolerance mostly come from studies on Drosophila (12, 25, 27, 32), and empirical evidence in aquatic ectotherms and specifically vertebrates is limited. The few studies that have been performed on fish show disparate responses to selection on heat tolerance even within the same species. Baer and Travis (33) detected no response to selection yet Doyle et al. (34) and Klerks et al. (28) detected selection responses with heritabilities of 0.2 in killifish (Heterandria formosa). Despite the typical asymmetry of thermal performance curves (3, 35), studies in vertebrates are limited to unidirectional estimates of evolutionary potential (28, 31, 33) or do not account for the direction of evolution when estimating heritability in upper thermal tolerance from breeding designs (36, 37). Furthermore, while several studies have found that populations with different thermal histories have evolved different levels of heat tolerance (2931), we still lack a good understanding of how physiological plasticity within a generation, in response to a short heat exposure, interacts with genetic changes during evolution of thermal tolerance.To investigate possible asymmetry in the evolutionary potential of upper thermal tolerance in a vertebrate species, we artificially selected offspring of wild-caught zebrafish (Danio rerio) to increase and decrease upper thermal tolerance for six generations. Furthermore, to disentangle the contribution of acclimation from the genetic response to increase upper thermal tolerance, we selected two lines that were exposed to a period of warm acclimation prior to a thermal challenge. The size (>20,000 phenotyped fish) and duration (six generations) of this study are unique in a vertebrate species for a climate change-relevant selection experiment, and the results provide critical and robust information on how tropical fish may adapt to a changing climate.Being a freshwater and tropical species, zebrafish are likely to be especially vulnerable to climate change (7, 38). In the wild, zebrafish can already be found living only a few degrees below their thermal limits (17, 39) and live in shallow streams and pools (40) that have the potential to rapidly warm during heat waves. Zebrafish therefore represent a species living at the edge of its thermal limit in which rapid adaptation of thermal tolerance would be particularly beneficial for its survival. Wild-caught zebrafish originating from different sites in West Bengal, India (17, 40), were used to maximize the genetic diversity of the parental population. These wild-caught zebrafish (n = 2,265) served as parents of the starting F0 generation (n = 1,800) on which we selected upper thermal tolerance for six generations. Upper thermal tolerance was measured as the critical thermal maximum (CTmax), a commonly used measure of an organism’s acute upper thermal tolerance (16, 41). CTmax is defined as the temperature at which an individual loses equilibrium (i.e., uncontrolled and disorganized swimming in zebrafish; ref. 42) during thermal ramping. Measuring CTmax is rapid, repeatable, and does not appear to harm zebrafish (42). CTmax is ecologically relevant because it is highly correlated with both tolerance to slow warming (43) and to the upper temperature range boundaries of wild aquatic ectotherms (9).Our selection experiment consisted of four treatment groups (Up-selected, Down-selected, Acclimated Up-selected, and Control) with two replicate lines in each treatment. We established these lines by selecting fish on their CTmax in the F0 generation with each line consisting of 150 individuals (see Methods for further details of F0 generation). The offspring of those fish formed the F1 generation that consisted of 450 offspring in each line. At each generation, the Up, Down, and Control lines were all held at optimal temperature (28 °C) (39), whereas the Acclimated Up-selected lines were acclimated to a supraoptimal temperature (32 °C) for 2 wk prior to selection (17). From the F1 to F6 generations, we measured CTmax for all 450 fish in each line and selected the 33% with the highest CTmax in the Up-selected and in the Acclimated Up-selected lines, and the 33% with the lowest CTmax in the Down-selected lines. In the Control lines, 150 fish were randomly selected, measured, and retained. Thus, CTmax was measured on a total of 3,000 fish per generation and 150 individuals remained in each of the eight lines after selection, forming the parents for the next generation. The nonselected lines (Control) represented a control for the Up-selected and Down-selected lines, while the Up-selected lines represented a control for the Acclimated Up-selected lines, because these two treatments solely differed by the acclimation period to which the latter were exposed before selection. Thus, differences in CTmax between Up-selected and Acclimated Up-selected lines represent the contribution of physiological plasticity to upper thermal tolerance. If the difference between these two treatments increases during selection, it would suggest that plasticity increases during adaptation to higher CTmax (i.e., the slope the reaction norm describing the relationship between CTmax and acclimation temperature would become steeper).After six generations of selection, upper thermal tolerance had evolved in both the Up-selected and the Down-selected lines (Fig. 1). In the Up-selected lines, upper thermal tolerance increased by 0.22 ± 0.05 °C (x̄ ± 1 SE) compared to the Control lines whereas the Down-selected lines displayed a mean upper thermal tolerance 0.74 ± 0.05 °C lower than the Control (Fig. 1B; estimates for replicated lines combined). The asymmetry in the response to selection was confirmed by the estimated realized heritability, which was more than twice as high in the Down-selected lines (h2 = 0.24; 95% CI: 0.19–0.28) than in the Up-selected lines (h2 = 0.10; 95% CI: 0.05–0.14; Fig. 2).Open in a separate windowFig. 1.Upper thermal tolerance (CTmax) of wild-caught zebrafish over six episodes of selection. Duplicated lines were selected for increased (Up-selected, orange lines and triangles) and decreased (Down-selected, blue lines and squares) upper thermal tolerance. In addition, we had two Control lines (green dashed lines and diamonds). The Up, Down, and Control lines were all acclimated to a temperature of 28 °C. In addition, two lines were selected for increased upper thermal tolerance after 2 wk of warm acclimation at 32 °C (Acclimated Up-selected, red lines and circles). At each generation, the mean and 95% CIs of each line are shown (n ∼ 450 individuals per line). (A) Absolute upper thermal tolerance values. (B) The response to selection in the Up and Down lines centered on the Control lines (dashed green line). Difference between Up-selected and Acclimated-Up lines are shown in Fig. 3. The rate of adaptation (°C per generation) is reported for each treatment using estimates obtained from linear mixed effects models using the Control-centered response in the Up-selected and Down-selected lines and the absolute response for the Acclimated-Up lines (SE = ±0.01 °C in all lines).Open in a separate windowFig. 2.Realized heritability (h2) of upper thermal tolerance (CTmax) in wild-caught zebrafish. The realized heritability was estimated for each treatment as the slope of the regression of the cumulative response to selection on the cumulative selection differential using mixed effect models passing through the origin with replicate as a random effect. Slopes are presented with their 95% CIs (shaded area) for the Down-selected lines (blue) and Up-selected lines (orange). Data points represent the mean of each replicate line (n ∼ 450) over six generations of selection. Average selection differentials are 0.57 (Down) and 0.39 (Up), respectively, see SI Appendix, Table S1 for more information.At the start of the experiment (F0), warm acclimation (32 °C) increased thermal tolerance by 1.31 ± 0.05 °C (difference in CTmax between the Up-selected and Acclimated Up-selected lines in Figs. 1A and and3),3), which translates to a 0.3 °C change in CTmax per 1 °C of warming. In the last generation, the effect of acclimation had decreased by 25%, with the Acclimated-Up lines having an average CTmax 0.98 ± 0.04 °C higher than the Up lines (Fig. 3). This suggests that, despite a slight increase in CTmax in the Acclimated Up-selected lines during selection, the contribution of plasticity decreased over the course of the experiment.Open in a separate windowFig. 3.Contribution of acclimation to the upper thermal tolerance in the Acclimated-Up selected lines at each generation of selection. The contribution of acclimation was estimated as the difference between the Up and Acclimated-Up selected lines. Points and error bars represent the estimates (±SE) from a linear mixed effects model with CTmax as the response variable; Treatment (factor with two levels: Up and Acclimated Up), Generation (factor with seven levels), and their interaction as the predictor variables; and replicate line as a random factor.During the experiment, the phenotypic variation of CTmax that was left-skewed at F0 increased in the Down-selected lines and decreased in the Up-selected lines (Fig. 4). At the F6 generation, phenotypic variance was four times lower in the Up-selected lines (0.09 ± 0.01 and 0.12 ± 0.02 °C2; variance presented for each replicate line separately and SE obtained by nonparametric bootstrapping) than in the Down-selected lines (0.41 ± 0.03 and 0.50 ± 0.04 °C2), which had doubled since the start of the experiment (F0: 0.20 ± 0.01 °C2, see SI Appendix, Fig. S1). In the Acclimated Up-selected lines, the phenotypic variance that was already much lower than the Control at the F0 also decreased and reached 0.06 ± 0.01 °C2 and 0.07 ± 0.01 °C2 for the two replicates at the last generation (SI Appendix, Fig. S1).Open in a separate windowFig. 4.Distribution of upper thermal tolerance (CTmax) in selected lines. (A) Distribution for each line at each generation (F0 to F6). In the F0 generation, histograms show the preselection distribution in gray for the nonacclimated fish, in dark green for the Control lines, and in red for the Acclimated-Up fish. In all subsequent generations the Down-selected lines are in blue, the Up-selected lines in yellow, the Control lines in dark green, and Acclimated-up lines in red. All treatments use two shades, one for each replicate line. Dashed lines represent the mean CTmax for each line (n ∼ 450 individuals). (B) Distribution of upper thermal tolerance at the start (F0, in gray) and the end (F6, in blue and yellow) of the experiment for the Up-selected and Down-selected lines. The dashed gray line represents the mean of the Up-selected and Down-selected lines in the F0 generation preselection (n ∼ 900 individuals). Dashed blue and yellow lines represent the mean CTmax for Up and Down-selected lines for the F6 generation (n ∼ 450 individuals).Together with the asymmetrical response to selection and the lower response of the Acclimated Up-selected lines, these changes in phenotypic variance suggest the existence of a hard-upper limit for thermal tolerance (e.g., major protein denaturation (44), similar to the “concrete ceiling” for physiological responses to warming (14)). Such a hard-upper limit is expected to generate a nonlinear mapping of the genetic and environmental effects on the phenotypic expression of CTmax. This nonlinearity will affect the phenotypic variance of CTmax when mean CTmax approaches its upper limit (SI Appendix, Fig. S2A). For example, with directional selection toward higher CTmax, genetic changes in upper thermal tolerance will translate into progressively smaller phenotypic changes. Similarly, warm acclimation that shifts CTmax upwards will also decrease phenotypic variation in CTmax (see differences in phenotypic variance between control and Acclimated lines at the F0). This hard ceiling can also explain why an evolutionary increase in CTmax reduces the magnitude of physiological plasticity in CTmax achieved after a period of acclimation (Fig. 3 and see SI Appendix, Fig. S2B). If the sum of the genetic and plastic contributions to CTmax cannot exceed a ceiling value, this should generate a zero-sum gain between the genetic and plastic determinants of thermal tolerance. An increase in the genetic contribution to CTmax via selection should thus decrease the contribution of plasticity. Selection for a higher CTmax should therefore negatively affect the slope of the reaction norm of thermal acclimation because acclimation will increase CTmax more strongly at low than high acclimation temperature (SI Appendix, Fig. S2B).To test this hypothesis, we measured CTmax in all selected lines at the final generation (F6) after acclimation to 24, 28, and 32 °C. At all three acclimation temperatures, the Acclimated-Up lines did not differ from the Up-selected lines (average difference 0.14 ± 0.08 °C; 0.12 ± 0.09 °C; 0.14 ± 0.09 °C; at 24, 28, and 32 °C respectively; Fig. 5). This suggests that warm acclimation prior to selection did not affect the response to selection. However, considering the within-treatment differences in CTmax between fish acclimated to 28 and 32 °C, we show that the gain in CTmax due to acclimation decreases in both the Up and Acclimated-Up treatments compared to the Control and Down treatments (SI Appendix, Fig. S3). This confirms a loss of thermal plasticity in both Up-selected treatments (Up and Acclimated-Up) at higher acclimation temperatures. Notably, the loss of thermal plasticity is not evident in fish acclimated to 24 and 28 °C, possibly because at these temperatures CTmax remains further away from its hard upper limit.Open in a separate windowFig. 5.Upper thermal tolerance (CTmax) of the selected lines measured at the last generation (F6) after acclimation at 24, 28, and 32 °C. The response is calculated as the mean difference in upper thermal tolerance (CTmax) relative to the Control lines. Large points and whiskers represent mean ±1 SE for each treatment (n = 120 individuals): Up-selected (orange triangles), Down-selected (blue squares), Acclimated Up-selected (red circles), and Control (green diamonds). Smaller translucent points represent means of each replicate line (n = 60 individuals). See SI Appendix, Fig. S3 for absolute CTmax values and model estimates.Acclimated Up-selected lines are perhaps the most ecologically relevant in our selection experiment. In the wild, natural selection on upper thermal tolerance may not result from increasing mean temperatures but through rapid heating events such as heat waves (45). During heat waves, temperature may rise for days before reaching critical temperatures. This gives individuals the possibility to acclimate and increase their upper thermal tolerance prior to peak temperatures. Our results show that while warm acclimation allowed individuals to increase their upper thermal tolerance, it did not increase the magnitude or the rate of adaptation of upper thermal tolerance.For the past two decades it has been recognized that rapid evolution, at ecological timescales, occurs and may represent an essential mechanism for the persistence of populations in rapidly changing environments (24, 46, 47). Yet, in the absence of an explicit reference, rates of evolution are often difficult to categorize as slow or rapid (48). For traits related to thermal tolerance or thermal performance, this issue is complicated by the fact that the scale on which traits are measured (temperature in °C) cannot meaningfully be transformed to a proportional scale. This prevents us from comparing rates of evolution between traits related to temperature with other traits measured on different scales (49, 50). However, for thermal tolerance, the rate of increase in ambient temperature predicted over the next century represents a particularly meaningful standard against which the rate of evolution observed in our study can be compared.In India and surrounding countries where zebrafish are native, heat waves are predicted to increase in frequency, intensity, and duration, and maximum air temperatures in some regions are predicted to exceed 44 °C in all future climate scenarios (51). Air temperature is a good predictor of water temperature in shallow ponds and streams where wild zebrafish are found (17, 40, 52, 53). Thus, strong directional selection on the thermal limits of zebrafish is very likely to occur in the wild. At first sight, changes in the upper thermal tolerance observed in our study (0.04 °C per generation) as well as the heritability estimates (Down-selected: h2 = 0.24, Up-selected: h2 = 0.10) similar to those obtained in fruit flies (Drosophila melanogaster) selected for acute upper thermal tolerance (Down-selected: h2 = 0.19, Up-selected: h2 = 0.12; ref. 12), suggest that zebrafish may just be able to keep pace with climate change and acutely tolerate temperatures of 44 °C predicted by the end of the century. However, several cautions make such an optimistic prediction unlikely.First, such an extrapolation assumes a generation time of 1 y, which is likely for zebrafish but unrealistic for many other fish species. Second, such a rate of evolution is associated with a thermal culling of two-thirds of the population at each generation, a strength of selection that may be impossible to sustain in natural populations exposed to other selection pressures such as predation or harvesting. Third, the heritability and rate of adaptation toward higher upper thermal tolerance observed here may be considered as upper estimates because of the potentially high genetic variance harbored by our parental population where samples from several sites were mixed. While mixing of zebrafish populations often occurs in the wild during monsoon flooding (54, 55), there are likely to be some isolated populations that may have a lower genetic diversity and adaptation potential than our starting population. Finally, and most importantly, the reduced phenotypic variance and decreased acclimation capacity with increasing CTmax observed in our study suggest the existence of a hard-upper limit to thermal tolerance that will lead to an evolutionary plateau similar to those reached in Drosophila selected for increased heat resistance over many generations (12, 56). Overall, the rate of evolution observed in our study is likely higher than what will occur in the wild and, based on this, it seems unlikely that zebrafish, or potentially other tropical fish species, will be able to acutely tolerate temperatures predicted by the end of the century. It is possible that other fish species, especially those living in cooler waters and with wider thermal safety margins, will display higher rates of adaptation than the ones we observed here, and more studies of this kind in a range of species are needed to determine whether slow adaptation of upper thermal tolerance is a general phenomenon.Transgenerational plasticity (e.g., epigenetics) has been suggested to modulate physiological thermal tolerance (57). However, the progressive changes in CTmax observed across generations in our study indicate that these changes were primarily due to genetic changes because effects of transgenerational plasticity are not expected to accumulate across generations. Therefore, the effects of transgenerational plasticity in the adaptation of upper thermal tolerance may be insufficient to mitigate impacts of climate change on zebrafish, yet the potential contribution of transgenerational plasticity is still an open question.By phenotyping more than 20,000 fish over six generations of selection, we show that evolution of upper thermal tolerance is possible in a vertebrate over short evolutionary time. However, the evolutionary potential for increased upper thermal tolerance is low due to the slow rate of adaptation compared to climate warming, as well as the diminishing effect of acclimation as adaptation progresses. Our results thus suggest that fish populations, especially warm water species living close to their thermal limits, may struggle to adapt with the rate at which water temperatures are increasing.  相似文献   
55.
In this review we summarize the impact of the various modalities of breast cancer therapy coupled with intrinsic patient factors on incidence of subsequent treatment-induced myelodysplasia and acute myelogenous leukemia (t-MDS/AML). It is clear that risk is increased for patients treated with radiation and chemotherapy at younger ages. Radiation is associated with modest risk, whereas chemotherapy, particularly the combination of an alkylating agent and an anthracycline, carries higher risk and radiation and chemotherapy combined increase the risk markedly. Recently, treatment with granulocyte colony-stimulating factor (G-CSF), but not pegylated G-CSF, has been identified as a factor associated with increased t-MDS/AML risk. Two newly identified associations may link homologous DNA repair gene deficiency and poly (ADP-ribose) polymerase inhibitor treatment to increased t-MDS/AML risk. When predisposing factors, such as young age, are combined with an increasing number of potentially leukemogenic treatments that may not confer large risk singly, the risk of t-MDS/AML appears to increase. Patient and treatment factors combine to form a biological cascade that can trigger a myelodysplastic event. Patients with breast cancer are often exposed to many of these risk factors in the course of their treatment, and triple-negative patients, who are often younger and/or BRCA positive, are often exposed to all of them. It is important going forward to identify effective therapies without these adverse associated effects and choose existing therapies that minimize the risk of t-MDS/AML without sacrificing therapeutic gain.

Implications for Practice

Breast cancer is far more curable than in the past but requires multimodality treatment. Great care must be taken to use the least leukemogenic treatment programs that do not sacrifice efficacy. Elimination of radiation and anthracycline/alkylating agent regimens will be helpful where possible, particularly in younger patients and possibly those with homologous repair deficiency (HRD). Use of colony-stimulating factors should be limited to those who truly require them for safe chemotherapy administration. Further study of a possible leukemogenic association with HRD and the various forms of colony-stimulating factors is badly needed.
  相似文献   
56.
BACKGROUND AND PURPOSE:Cervical spine axial MRI T2-hyperintense fluid signal of the anterior median fissure and round hyperintense foci resembling either the central canal or base of the anterior median fissure are associated with a craniocaudad sagittal line, also simulating the central canal. On the basis of empiric observation, we hypothesized that hyperintense foci, the anterior median fissure, and the sagittal line are seen more frequently in patients with Chiari malformation type I, and the sagittal line may be the base of the anterior median fissure in some patients.MATERIALS AND METHODS:Saggital line incidence and the incidence/frequency of hyperintense foci and anterior median fissure in 25 patients with Chiari I malformation and 25 contemporaneous age-matched controls were recorded in this prospective exploratory study as either combined (hyperintense foci+anterior median fissure in the same patient), connected (anterior median fissure extending to and appearing to be connected with hyperintense foci), or alone as hyperintense foci or an anterior median fissure. Hyperintense foci and anterior median fissure/patient, hyperintense foci/anterior median fissure ratios, and anterior median fissure extending to and appearing to be connected with hyperintense foci were compared in all, in hyperintense foci+anterior median fissure in the same patient, and in anterior median fissure extending to and appearing to be connected with hyperintense foci in patients with Chiari I malformation and controls.RESULTS:Increased sagittal line incidence (56%), hyperintense foci (8.5/patient), and anterior median fissure (4.0/patient) frequency were identified in patients with Chiari I malformation versus controls (28%, 3.9/patient, and 2.7/patient, respectively). Increased anterior median fissure/patient, decreasing hyperintense foci/anterior median fissure ratio, and increasing anterior median fissure extending to and appearing to be connected with hyperintense foci/patient were identified in Chiari subgroups. A 21%–58% increase in observed anterior median fissure extending to and appearing connected to hyperintense foci in the entire cohort and multiple sagittal line subgroups compared with predicted occurred.CONCLUSIONS:In addition to the anticipated increased incidence/frequency of sagittal line and hyperintense foci in patients with Chiari I malformation, an increased incidence and frequency of anterior median fissure and anterior median fissure extending to and appearing to be connected with hyperintense foci/patient were identified. We believe an anterior median fissure may contribute to a saggital line appearance in some patients with Chiari I malformation. While thin saggital line channels are usually ascribed to the central canal, we believe some may be due to the base of the anterior median fissure, created by pulsatile CSF hydrodynamics.

Axial MR imaging of the cervical spine frequently demonstrates hyperintense, linear, anatomically, sagittally-oriented T2 fluid signal of the anterior median fissure (AMF) and hyperintense foci (HIF) resembling the central canal or the base of the AMF.1-3 These axial T2 findings may be associated with a channel-like T2-hyperintense craniocaudad line on images parallel to the sagittal plane (a sagittal line [SL]), simulating the central canal (Fig 1).4,5 A previous analysis of HIF, AMF, and a thin SL in a population without Chiari I malformation provided not only a baseline for their identification but also a confirmation of a relationship between not only the AMF and HIF but also their relationship to the SL.1 It found the following:
  1. HIF were greater in number than AMFs, but AMFs increase in the presence of increasing HIF, suggesting an anatomic relationship.
  2. SLs were associated with greater numbers of both HIF and AMF/patient (pt.) versus no SL, 6.7 versus 2.7/pt. and 3.3 versus 2.0/pt., respectively. SL presence correlated more closely to HIF than to AMF presence within the entire 358-patient group.
  3. When HIF and AMF were classified as combined (concurrent HIF and AMF, with ≥1 of each both present in the same patient [HIF+AMF]) or continuous (AMF appearing to extend to and join an HIF [AMF>HIF]), HIF and AMF/pt. each differed numerically and patients with an SL had more combined HIF+AMF and continuous AMF>HIF than patients without an SL.
  4. In patients with both SL and combined HIF+AMF (a circumstance allowing the possibility of a relationship of all 3 structures), HIF become proportionally fewer compared with AMFs. In patients with an SL actually exhibiting continuous AMF>HIF, the HIF/AMF ratio decreased further.
Open in a separate windowFIG 1.A patient with Chiari I with 19 HIF up to 3 mm in diameter, 1 AMF, no AMF>HIF, and an SL of various hyperintensity and diameter from C4 through T1, consistent with hydromyelia.While it is expected that manifestations of the central canal as an SL and HIF are more frequent in patients with Chiari syndrome type I,6 past experience leads us to hypothesize that AMFs are also seen more frequently in patients with Chiari I malformation and that the SL or channel may represent the base of a wide AMF, rather than the central canal, in some patients (Figs 1 and and2).2). Therefore, we performed an exploratory prospective analysis of HIF, AMF, and SL in patients with Chiari I malformation to examine their relationships.Open in a separate windowFIG 2.Postdecompressive craniectomy patient with Chiari I with 9 HIF, 4 AMFs, 1 AMF>HIF, and sharp and hyperintense SLs at C6–C7 and less hyperintense, sharp, and defined SLs at C2–C6.  相似文献   
57.
ABSTRACT

Abortion is legal in South Africa, but negative abortion attitudes remain common and are poorly understood. We used nationally representative South African Social Attitudes Survey data to analyze abortion attitudes in the case of fetal anomaly and in the case of poverty from 2007 to 2016 (n = 20,711; ages = 16+). We measured correlations between abortion attitudes and these important predictors: religiosity, attitudes about premarital sex, attitudes about preferential hiring and promotion of women, and attitudes toward family gender roles. Abortion acceptability for poverty increased over time (b = 0.05, p < .001), but not for fetal anomaly (b = ?0.008, p = .284). Highly religious South Africans reported lower abortion acceptability in both cases (Odds Ratio (OR)anomaly = 0.85, p = .015; ORpoverty = 0.84, p = .02). Premarital sex acceptability strongly and positively predicted abortion acceptability (ORanomaly = 2.63, p < .001; ORpoverty = 2.46, p < .001). Attitudes about preferential hiring and promotion of women were not associated with abortion attitudes, but favorable attitudes about working mothers were positively associated with abortion acceptability for fetal anomaly ((ORanomaly = 1.09, p = .01; ORpoverty = 1.02, p = .641)). Results suggest negative abortion attitudes remain common in South Africa and are closely tied to religiosity, traditional ideologies about sexuality, and gender role expectations about motherhood.  相似文献   
58.
Abstract

This study is a single-center, retrospective analysis of postmenopausal women presenting with dyspareunia and vulvar pain, aiming to evaluate relative effectiveness of vestibular CO2 laser therapy as a treatment. Three monthly sessions of laser were performed to each patient and thereafter a three-months follow-up was stablished. A total number of 72 patients undergoing vestibular laser treatment were recruited from patient files in the period between 2016 and 2018. Among these, 39 women also received a concomitant treatment with ospemifene (60?mg/day) during the study period. There was a statistically significant reduction of all the symptoms in both groups up to the three month follow-up. Regarding dryness and dyspareunia, the relief tent to be more prominent in the ospemifene?+?laser group at all follow-ups and remained statistically significant at three-month follow-up. Specifically, vestibular dryness was significantly lower in the ospemifene?+?laser group compared with the laser treatment group (?87% vs???34%, respectively), and the vestibular health score started declining faster in the ospemifene?+?laser group. Although, additional research is needed to understand the mechanism of action, our data shows that a combination regimen of laser and ospemifene may improve clinical effectiveness for long-term treatment of symptoms associated with the under-recognized genitourinary syndrome of menopause.  相似文献   
59.
60.
ABSTRACT

A monocausal bacteriological understanding of infectious disease orients tuberculosis control efforts towards antimicrobial interventions. A bias towards technological solutions can leave multistranded public health and social interventions largely neglected. In the context of globalising biomedical approaches to infectious disease control, this ethnography-inspired review article reflects upon the implementation of rapid diagnostic technology in low- and middle-income countries. Fieldwork observations in Vietnam provided a stimulus for a critical review of the global rollout of tuberculosis diagnostic technology. To address local needs in tuberculosis control, health managers in resource-poor settings are readily cooperating with international donors to deploy novel diagnostic technologies throughout national tuberculosis programme facilities. Increasing investment in new diagnostic technologies is predicated on the supposition that these interventions will ameliorate disease outcomes. However, suboptimal treatment control persists even when accurate diagnostic technologies are available, suggesting that promotion of singular technological solutions can distract from addressing systemic change, without which disease susceptibility, propagation of infection, detection gaps, diagnostic delays, and treatment shortfalls persist.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号