首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   359篇
  免费   27篇
耳鼻咽喉   1篇
儿科学   6篇
妇产科学   16篇
基础医学   40篇
口腔科学   9篇
临床医学   37篇
内科学   41篇
皮肤病学   20篇
神经病学   27篇
特种医学   3篇
外科学   65篇
综合类   2篇
预防医学   17篇
眼科学   31篇
药学   16篇
肿瘤学   55篇
  2023年   3篇
  2022年   7篇
  2021年   13篇
  2020年   10篇
  2019年   24篇
  2018年   14篇
  2017年   11篇
  2016年   11篇
  2015年   24篇
  2014年   21篇
  2013年   23篇
  2012年   38篇
  2011年   28篇
  2010年   20篇
  2009年   16篇
  2008年   23篇
  2007年   22篇
  2006年   21篇
  2005年   15篇
  2004年   10篇
  2003年   8篇
  2002年   10篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1979年   2篇
排序方式: 共有386条查询结果,搜索用时 171 毫秒
41.
42.
Loss of PTEN is associated with progression to androgen independence   总被引:2,自引:0,他引:2  
BACKGROUND: Progression to a lethal androgen-independent (AI) stage of advanced prostate cancer is a critical clinical obstacle limiting patient survival. PTEN inactivation is frequently observed in advanced prostate cancer and correlates with a poor prognosis. However, the functional significance of PTEN inactivation in AI progression has not been demonstrated. METHODS: PTEN expression was examined in benign, hormone na?ve and AI human prostate cancer specimens, and in recurrent AI Shionogi tumors. The effect of antisense oligonucleotide (ASO)-mediated PTEN downregulation in AI progression of the Shionogi tumor model was determined. RESULTS: Significantly reduced PTEN expression was observed in AI versus benign and hormone na?ve prostate tumors. Seven of 14 AI Shionogi tumors exhibited marked downregulation or complete loss of PTEN. ASO-mediated PTEN inhibition reduced androgen-withdrawal induced regression of Shionogi tumors and accelerated AI progression. CONCLUSIONS: These data suggest that PTEN inactivation may play a role in progression to androgen independence.  相似文献   
43.
BACKGROUND: Despite evidence implicating insulin-like growth factor binding protein-3 (IGFBP-3) as a growth inhibitor of prostate cancer (CaP), little is known about changes in its regulation and function during progression to androgen independence. METHODS: The expression levels of IGFBP-3 were determined by cDNA microarray analysis and tissue microarrays (TMAs) after androgen ablations. LNCaP (LN-BP3) and C4-2 (C4-2-BP3) sublines were used to compare the apoptotic effects of IGFBP-3 in LNCaP (androgen-dependent) and C4-2 (androgen-independent) cells. RESULTS: After androgen deprivation, IGFBP-3 mRNA levels increased more in C4-2 compared to LNCaP cells. Androgens suppressed IGFBP-3 levels in a dose-dependent manner in LNCaP and C4-2 cell. IGFBP-3 expression was increased after NHT in human CaP tissues. Apoptotic rates increased in LN-BP3, but not C4-2-BP3 cells, following doxycycline-mediated IGFBP-3 induction. CONCLUSIONS: C4-2 cell survival in an androgen-depleted environment may be facilitated through differential resistance to the apoptotic effects elicited by IGFBP-3.  相似文献   
44.
OBJECTIVES: To evaluate synthetic small interference RNA (siRNA) compounds targeting heat-shock protein 27 (Hsp27) as an alternative approach to Hsp27 'knockdown' in prostate cancer cells, as Hsp27 expression is highly up-regulated in prostate cancer cells after androgen withdrawal or chemotherapy, to become uniformly highly expressed in androgen-independent (AI) prostate cancer. MATERIALS AND METHODS: We recently showed that targeting Hsp27 by a 2'-methoxyethyl modified phosphorothioate antisense oligonucleotide, OGX-427, inhibits Hsp27 expression and enhances hormone- and chemotherapy in prostate cancer xenograft models. In the present study, a 'gene walk' screening different siRNAs was initially used in PC-3 and LNCaP cells to determine the most potent sequence to down-regulate Hsp27 mRNA and protein levels. The effects of Hsp27 silencing on in vitro growth rates were studied by tetrazolium-blue and crystal violet assays. Apoptosis was determined by single-stranded DNA nuclear and cleaved caspase-3 immunostaining, as well as flow cytometry. Spotted microarrays with 14,000 human oligonucleotides were used to examine changes in gene expression. RESULTS: Low concentrations of 1 nm siRNA decreased Hsp27 mRNA levels by 19-fold and suppressed protein expression to undetectable levels. Silencing of Hsp27 in prostate cancer cells by siRNA # 2 increased apoptotic rates 2.4-4 fold and caused 40-76% inhibition of cell growth in LNCaP and PC-3 cells. Characteristic cleavage of caspase-3 occurred after treatment with Hsp27 siRNA (1 nm). cDNA microarray analysis from LNCaP and PC-3 cell lines revealed differential gene expression profiles after Hsp27 down-regulation that could be used to identify various survival pathways involved in androgen-dependent and AI growth. CONCLUSIONS: These findings illustrate the potential utility of Hsp27-silencing therapy and highlight Hsp27 siRNA strategies as a novel and highly effective tool, with the potential for future targeted therapy in enhancing the efficacy of chemotherapy in advanced prostate cancer.  相似文献   
45.
PURPOSE: We explored the efficacy of the ginsenoside Rh2 and examined its impact on the effective dose of paclitaxel and mitoxantrone in the LNCaP prostate tumor model. MATERIALS AND METHODS: Cultured LNCaP cell viability was assessed following treatment (48 hours) with Rh2 (0 to 40 microM) alone or in combination with paclitaxel and mitoxantrone. Synergism or antagonism observed when combining treatment was calculated using CalcuSyn software (Biosoft). In addition, the inhibition of LNCaP human xenograft tumor growth was examined in vivo when Rh2 treatment was combined with chemotherapy. Harvested tumors were immunohistochemical stained with p27kip and Ki67. RESULTS: Rh2 and paclitaxel act synergistically in cultured LNCaP cells to lower ED50 and ED75 values. Rh2 and mitoxantrone are also synergistic. However, when combined as ED95, an antagonistic effect was observed in this cell line. Treatment of LNCaP tumors by Rh2 plus paclitaxel produced a significant decrease in tumor growth and serum prostate specific antigen. Immunohistochemical analysis revealed an apparent but nonsignificant effect on proliferation markers in LNCaP tumors. When Rh2 and mitoxantrone were combined in vivo, there was no significant benefit observed. CONCLUSIONS: These results indicate that the combination of Rh2 and paclitaxel has an effect on growth inhibition that is greater and synergistic, as demonstrated in a cultured LNCaP cell line. Conversely combining Rh2 with mitoxantrone appears to elicit no benefit. Therefore, combination therapy using chemotherapy and Rh2 requires further investigation.  相似文献   
46.
Clusterin is a stress-associated cytoprotective chaperone up-regulated by various apoptotic triggers in many cancers and confers treatment resistance when overexpressed. The objectives of this study were to evaluate clusterin expression levels in human breast cancer and to determine whether antisense oligonucleotides or double-stranded small interfering RNAs (siRNA) targeting the clusterin gene enhance apoptosis induced by paclitaxel. Clusterin immunostaining was evaluated in a tissue microarray of 379 spotted breast cancers. The effect of hormone withdrawal, paclitaxel treatment, clusterin antisense oligonucleotide (OGX-011), and siRNA treatments on clusterin expression was examined in MCF-7 and MDA-MB-231 cells. Northern, quantitative real-time PCR, and Western analyses were used to measure change in clusterin mRNA and protein levels. The effect of OGX-011 or siRNA clusterin treatment on chemosensitivity to paclitaxel was done in both cell lines in vitro, whereas the ability of OGX-011 to chemosensitize in vivo was evaluated in athymic mice bearing MCF-7 tumors. Clusterin was expressed in 62.5% of tumors within the tissue microarray. Clusterin expression increased after estrogen withdrawal and paclitaxel treatment in vitro in MCF-7 cells. OGX-011 or siRNA clusterin decreased clusterin levels by >90% in a dose-dependent, sequence-specific manner and significantly enhanced chemosensitivity to paclitaxel in vitro. When combined, OGX-011 or siRNA clusterin reduced the IC50 by 2-log compared with paclitaxel alone. In vivo administration of OGX-011 enhanced the effects of paclitaxel to significantly delay MCF-7 tumor growth. These data identify clusterin as a valid therapeutic target and provides preclinical proof-of-principle to test OGX-011 in multimodality therapies for breast cancer.  相似文献   
47.
Ghosh R  Gu G  Tillman E  Yuan J  Wang Y  Fazli L  Rennie PS  Kasper S 《The Prostate》2007,67(10):1038-1052
BACKGROUND: Proteins which regulate normal development may promote tumorigenesis, tumor progression, or metastasis through dysregulation of these functions. We postulate that proteins, which regulate prostate growth also promote prostate cancer (PCa) progression. METHODS: Two Dimensional Gel Electrophoresis was utilized to compare patterns of protein expression in 12T-7f prostates (LPB-Tag mouse model for PCa) during tumor development and progression with those of normal developing and adult wild type CD-1 prostates. Stathmin expression and phosphorylation patterns were analyzed in mouse and human PCa cell lines as well as in human PCa tissue arrays. RESULTS: Stathmin was identified by two-dimensional gel electrophoresis and mass spectrometry. Stathmin levels increase early during normal mouse prostate development and again during prostate tumor development and progression. In human prostate adenocarcinoma, stathmin increases in Gleason pattern 5. Further, stathmin is differentially phosphorylated in androgen-dependent LNCaP cells compared to androgen-independent PC-3 and DU145 cells. This differential phosphorylation is modulated by androgen and anti-androgen treatment. CONCLUSION: Stathmin expression is highest when the prostate is undergoing morphogenesis or tumorigenesis and these processes may be regulated through differential phosphorylation. Furthermore, modulation of stathmin phosphorylation may correlate with the development of androgen-independent PCa.  相似文献   
48.
We examined whether ex vivo expansion of umbilical cord blood progenitor cells affected their capacity to generate immune cells such as T lymphocytes (TLs) and dendritic cells (DCs). The capacity to generate TLs from cord blood CD34(+) cells expanded for 14 days (d14) was compared with that of nonexpanded CD34(+) cells (d0) using fetal thymus organ cultures or transfer into nonobese diabetic/severe combined immunodeficient mice. The cell preparations yielded comparable percentages of immature (CD4(+)CD8(-), CD4(+)CD8(+)) TLs and functional mature (CD3(+)CD4(+), CD3(+)CD8(+)) TLs with an analogous TCR (T-cell receptor)-Vbeta repertoire pattern. As regards DCs, d0 and d14 CD34(+) cells also yielded similar percentages of CD1a(+) DCs with the same expression levels of HLA-DR, costimulatory and adhesion molecules, and chemokine receptors. DCs derived from either d14 or d0 CD34(+) stimulated allogeneic TLs to the same extent, and the cytokine pattern production of these allogeneic TLs was similar with no shift toward a predominant Th1 or Th2 response. Even though the intrinsic capacity of d14 CD34(+) cells to generate DCs was 13-fold lower than that of d0 CD34(+) cells, this reduction was offset by the prior amplification of the CD34(+) cells, resulting in the overall production of 15-fold more DCs. These data indicate that ex vivo expansion of CD34(+) cells does not impair T lymphopoiesis nor DC differentiation capacity.  相似文献   
49.
50.
Treatment resistance, the major challenge in the management of advanced prostate cancer, is in part based on resistance to apoptosis. The Inhibitor of Apoptosis (IAP) protein family is thought to play key roles in survival and drug resistance of cancer via inhibition of apoptosis. Of the IAP family members, cIAP1, cIAP2, XIAP and survivin are known to be up-regulated in prostate cancer. BIRC6, a much less studied IAP member, was recently shown to be elevated in castration-resistant prostate cancer (CRPC). In the present study, we showed a correlation between elevated BIRC6 expression in clinical prostate cancer specimens and poor patient prognostic factors, as well as co-upregulation of certain IAP members. In view of this, we designed antisense oligonucleotides that simultaneously target BIRC6 and another co-upregulated IAP member (dASOs). Two dASOs, targeting BIRC6+cIAP1 and BIRC6+survivin, showed substantial inhibition of CRPC cell proliferation, exceeding that obtained with single BIRC6 targeting. The growth inhibition was associated with increased apoptosis, cell cycle arrest and suppression of NFkB activation. Moreover, treatment with either dASO led to significantly lower viable tumor volume in vivo, without major host toxicity. This study shows that BIRC6-based dual IAP-targeting ASOs represent potential novel therapeutic agents against advanced prostate cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号