首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   820篇
  免费   50篇
  国内免费   1篇
耳鼻咽喉   6篇
儿科学   45篇
妇产科学   9篇
基础医学   158篇
口腔科学   16篇
临床医学   80篇
内科学   155篇
皮肤病学   32篇
神经病学   74篇
特种医学   16篇
外科学   55篇
综合类   9篇
一般理论   3篇
预防医学   65篇
眼科学   35篇
药学   73篇
中国医学   1篇
肿瘤学   39篇
  2024年   2篇
  2023年   10篇
  2022年   23篇
  2021年   43篇
  2020年   19篇
  2019年   25篇
  2018年   31篇
  2017年   9篇
  2016年   20篇
  2015年   30篇
  2014年   28篇
  2013年   47篇
  2012年   73篇
  2011年   47篇
  2010年   34篇
  2009年   22篇
  2008年   50篇
  2007年   65篇
  2006年   51篇
  2005年   37篇
  2004年   37篇
  2003年   35篇
  2002年   35篇
  2001年   8篇
  2000年   3篇
  1999年   4篇
  1998年   8篇
  1997年   3篇
  1996年   6篇
  1995年   2篇
  1994年   4篇
  1993年   4篇
  1989年   3篇
  1988年   4篇
  1987年   2篇
  1986年   3篇
  1984年   4篇
  1978年   2篇
  1976年   2篇
  1973年   2篇
  1935年   1篇
  1933年   5篇
  1931年   2篇
  1929年   1篇
  1928年   1篇
  1927年   1篇
  1925年   3篇
  1922年   1篇
  1912年   2篇
  1911年   1篇
排序方式: 共有871条查询结果,搜索用时 0 毫秒
21.

Purpose

Sympathetic nervous system (SNS) hyperactivity is a salient characteristic of chronic heart failure (HF) and contributes to the progression of the disease. Iodine-123 meta-iodobenzylguanidine (123I-mIBG) imaging has been successfully used to assess cardiac SNS activity in HF patients and to predict prognosis. Importantly, SNS hyperactivity characterizes also physiological ageing, and there is conflicting evidence on cardiac 123I-mIBG uptake in healthy elderly subjects compared to adults. However, little data are available on the impact of ageing on cardiac sympathetic nerve activity assessed by 123I-mIBG scintigraphy, in patients with HF.

Methods and results

We studied 180 HF patients (age?=?66.1?±?10.5 years [yrs]), left ventricular ejection fraction (LVEF?=?30.6?±?6.3 %) undergoing cardiac 123I-mIBG imaging. Early and late heart to mediastinum (H/M) ratios and washout rate were calculated in all patients. Demographic, clinical, and echocardiographic data were also collected. Our study population consisted of 53 patients aged >75 years (age?=?77.7?±?4.0 year), 67 patients aged 62–72 years (age?=?67.9?±?3.2 years) and 60 patients aged ≤61 year (age?=?53.9?±?5.6 years). In elderly patients, both early and late H/M ratios were significantly lower compared to younger patients (p?<?0.05). By multivariate analysis, H/M ratios (both early and late) and washout rate were significantly correlated with LVEF and age.

Conclusions

Our data indicate that, in a population of HF patients, there is an independent age-related effect on cardiac SNS innervation assessed by 123I-mIBG imaging. This finding suggests that cardiac 123I-mIBG uptake in patients with HF might be affected by patient age.
  相似文献   
22.
To support pre-clinical studies of Apo2L/TRAIL in rodents and non-human primates, a sandwich ELISA was developed using two mouse monoclonal anti-Apo2L/TRAIL antibodies. Mouse, rat, cynomolgus monkey, and chimpanzee serum at concentrations of > or =1% were found to interfere with accurate quantitation of Apo2L/TRAIL. Moreover, the characteristics of the serum interference for each species were different. In order to resolve the observed serum effect, studies were performed in which salts, detergents, and blocking proteins were added to the sample diluent, and optimized sample diluents that eliminated serum interference were developed for mouse, cynomolgus monkey, and chimpanzee serum. These buffers consisted of a base assay diluent (PBS/0.5% BSA/0.05% Tween-20/10 ppm ProClin 300) supplemented with: NaCl (mouse serum); NaCl, EDTA, CHAPS, bovine gamma globulin (BGG), and human IgG (cynomolgus monkey serum); and NaCl and EDTA (chimpanzee serum). Full characterization studies were performed for the "buffer" ELISA run in base assay diluent (intended for non-serum samples) as well as the assays optimized for mouse serum and cynomolgus monkey serum. Precision, accuracy, linearity, and specificity were found to be satisfactory. With the availability of a rabbit polyclonal antibody against Apo2L/TRAIL, a new pAb/mAb ELISA was developed. This assay was not only more sensitive by > or =6-fold, but it was also much less subject to serum interference.  相似文献   
23.
This study investigated the influence of chronic β3-adrenoceptor deficiency on myocardial function. Therefore, we investigated Ca2+-regulatory proteins, SERCA 2a activity, and myofibrillar and mitochondrial function in hearts of wild-type (WT, n=7) and β3-adrenoceptor knockout mice (β3-KNO, n=7). Morphometric heart analysis showed no difference between WT and β3-KNO. No alterations were observed for the protein expression of the ryanodine receptor or phospholamban. However, in β3-KNO mice, protein expression of SERCA 2a and phospholamban phosphorylation were significantly increased. These changes were accompanied by an increased SERCA 2a activity in β3-KNO. Alterations in phospholamban phosphorylation were independent of alterations in β12-adrenoceptor distribution and protein expression of G proteins in β3-KNO. Measurement of myofibrillar Ca2+ sensitivity showed no difference in the Ca2+/force relation for WT and β3-KNO. The same seems to hold true for mitochondrial function since the protein expressions of cytochrome c, uncoupling protein 3 and cytochrome c oxidase subunit IV were similar in WT and β3-KNO. The conclusion is that depression of β3-adrenergic stimulation may modulate the protein expression of SERCA 2a and phospholamban phosphorylation, thereby improving sarcoplasmic reticulum Ca2+ uptake. Thus, β3-adrenergic depression may be a therapeutic aim in situations of impaired SERCA 2a activity, e.g. for the treatment of heart failure.  相似文献   
24.
Introduction: G protein-coupled receptor (GPCR) kinase-2 (GRK2) is a regulator of GPCRs, in particular β-adrenergic receptors (ARs), and as demonstrated by decades of investigation, it has a pivotal role in the development and progression of cardiovascular disease, like heart failure (HF). Indeed elevated levels and activity of this kinase are able to promote the dysfunction of both cardiac and adrenal α- and β-ARs and to dysregulate other protective signaling pathway, such as sphingosine 1-phospate and insulin. Moreover, recent discoveries suggest that GRK2 can signal independently from GPCRs, in a ‘non-canonical’ manner, via interaction with non-GPCR molecule or via its mitochondrial localization.

Areas covered: Based on this premise, GRK2 inhibition or its genetic deletion has been tested in several disparate animal models of cardiovascular disease, showing to protect the heart from adverse remodeling and dysfunction.

Expert opinion: HF is one of the leading cause of death worldwide with enormous health care costs. For this reason, the identification of new therapeutic targets like GRK2 and strategies such as its inhibition represents a new hope in the fight against HF development and progression. Herein, we will update the readers about the ‘state-of-art’ of GRK2 inhibition as a potent therapeutic strategy in HF.  相似文献   

25.
26.
GABAB receptors assemble from GABAB1 and GABAB2 subunits. GABAB2 additionally associates with auxiliary KCTD subunits (named after their K+ channel tetramerization-domain). GABAB receptors couple to heterotrimeric G-proteins and activate inwardly-rectifying K+ channels through the βγ subunits released from the G-protein. Receptor-activated K+ currents desensitize in the sustained presence of agonist to avoid excessive effects on neuronal activity. Desensitization of K+ currents integrates distinct mechanistic underpinnings. GABAB receptor activity reduces protein kinase-A activity, which reduces phosphorylation of serine-892 in GABAB2 and promotes receptor degradation. This form of desensitization operates on the time scale of several minutes to hours. A faster form of desensitization is induced by the auxiliary subunit KCTD12, which interferes with channel activation by binding to the G-protein βγ subunits. Here we show that the two mechanisms of desensitization influence each other. Serine-892 phosphorylation in heterologous cells rearranges KCTD12 at the receptor and slows KCTD12-induced desensitization. Likewise, protein kinase-A activation in hippocampal neurons slows fast desensitization of GABAB receptor-activated K+ currents while protein kinase-A inhibition accelerates fast desensitization. Protein kinase-A fails to regulate fast desensitization in KCTD12 knock-out mice or knock-in mice with a serine-892 to alanine mutation, thus demonstrating that serine-892 phosphorylation regulates KCTD12-induced desensitization in vivo. Fast current desensitization is accelerated in hippocampal neurons carrying the serine-892 to alanine mutation, showing that tonic serine-892 phosphorylation normally limits KCTD12-induced desensitization. Tonic serine-892 phosphorylation is in turn promoted by assembly of receptors with KCTD12. This cross-regulation of serine-892 phosphorylation and KCTD12 activity sharpens the response during repeated receptor activation.  相似文献   
27.
IGF-I has been suggested to be of importance for cardiovascular structure and function, but the relative role of locally produced and liver-derived endocrine IGF-I remains unclear. Using the Cre-LoxP recombination system, we have previously created transgenic mice with a liver-specific, inducible IGF-I knockout (LI-IGF-I-/-). To examine the role of liver-derived IGF-I in cardiovascular physiology, liver-derived IGF-I was inactivated at 4 wk of age, resulting in a 79% reduction of serum IGF-I levels. At 4 months of age, systolic blood pressure (BP) was increased in LI-IGF-I-/- mice. Echocardiography showed increased posterior wall thickness in combination with decreased stroke volume and cardiac output, whereas other systolic variables were unchanged, suggesting that these cardiac effects were secondary to increased peripheral resistance. Acute nitric oxide-synthase inhibition increased systolic BP more in LI-IGF-I-/- mice than in control mice. LI-IGF-I-/- mice showed impaired acetylcholine-induced vasorelaxation in mesenteric resistance vessels and increased levels of endothelin-1 mRNA in aorta. Thus, the increased peripheral resistance in LI-IGF-I-/- mice might be attributable to endothelial dysfunction associated with increased expression of endothelin-1 and impaired vasorelaxation of resistance vessels. In conclusion, our findings suggest that liver-derived IGF-I is involved in the regulation of BP in mice.  相似文献   
28.
29.
30.
Collagen membranes and bone substitute are popular biomaterials in guided tissue regeneration for treatment of traumatized or diseased periodontal tissue. Development of these biomaterials starts in monolayer cell culture, failing to reflect in vivo tissue organization. Spheroid cultures potentially mimic in vivo tissues in structure and functionality. This study aims to compare gingiva cell (GC) monolayers and spheroids to ex vivo gingiva. Human GC monolayers, spheroids and gingiva ex vivo tissues were cultured on plastic surfaces, collagen membranes or bone substitute. Hematoxylin–eosin (HE) staining, immunohistochemistry for KI67 and caspase 3 (CASP3), resazurin‐based toxicity assays, quantitative polymerase chain reaction for collagen I (COL1A1), vascular endothelial growth factor (VEGF), angiogenin (ANG), interleukin (IL)6 and IL8 and ELISA for COL1A1, VEGF, ANG, IL6 and IL8 were performed in all cultures. Morphology was different in all culture set‐ups. Staining of KI67 was positive in monolayers and staining of CASP3 was positive in spheroids. All culture set‐ups were viable. COL1A1 production was modulated in monolayers and ex vivo tissues at mRNA levels, VEGF in monolayers and ex vivo tissues at mRNA levels and in spheroids at protein levels, ANG in spheroids at mRNA levels and in monolayers and spheroids at protein levels, IL6 in monolayers and spheroids at mRNA levels and in spheroids and ex vivo tissues at protein levels and IL8 in monolayers and ex vivo tissues at mRNA levels. Modulations were surface‐dependent. In conclusion, each culture model is structurally and functionally different. Neither GC monolayers nor spheroids mimicked gingiva ex vivo tissue in all measured aspects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号