首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4167篇
  免费   310篇
  国内免费   5篇
耳鼻咽喉   51篇
儿科学   91篇
妇产科学   50篇
基础医学   573篇
口腔科学   55篇
临床医学   563篇
内科学   777篇
皮肤病学   32篇
神经病学   444篇
特种医学   92篇
外科学   339篇
综合类   51篇
预防医学   610篇
眼科学   79篇
药学   337篇
中国医学   22篇
肿瘤学   316篇
  2024年   9篇
  2023年   33篇
  2022年   41篇
  2021年   105篇
  2020年   78篇
  2019年   90篇
  2018年   122篇
  2017年   91篇
  2016年   103篇
  2015年   104篇
  2014年   147篇
  2013年   227篇
  2012年   373篇
  2011年   342篇
  2010年   170篇
  2009年   150篇
  2008年   266篇
  2007年   310篇
  2006年   246篇
  2005年   278篇
  2004年   276篇
  2003年   213篇
  2002年   219篇
  2001年   36篇
  2000年   31篇
  1999年   31篇
  1998年   42篇
  1997年   29篇
  1996年   22篇
  1995年   19篇
  1994年   29篇
  1993年   21篇
  1992年   6篇
  1991年   14篇
  1990年   15篇
  1989年   17篇
  1988年   13篇
  1987年   13篇
  1986年   10篇
  1985年   9篇
  1984年   19篇
  1983年   12篇
  1982年   11篇
  1981年   9篇
  1980年   10篇
  1977年   5篇
  1974年   5篇
  1972年   6篇
  1971年   6篇
  1969年   6篇
排序方式: 共有4482条查询结果,搜索用时 15 毫秒
41.
Dietary modification is central to obesity treatment. Weight loss diets are available that include various permutations of energy restriction, macronutrients, foods, and dietary intake patterns. Caloric restriction is the common pathway for weight reduction, but different diets may induce weight loss by varied additional mechanisms, including by facilitating dietary adherence. This narrative Review of meta-analyses and select clinical trials found that lower-calorie diets, compared with higher-calorie regimens, reliably induced larger short-term (<6 months) weight losses, with deterioration of this benefit over the long term (>12 months). Few significant long-term differences in weight loss were observed for diets of varying macronutrient composition, although some regimens were found to have short-term advantages (e.g., low carbohydrate versus low fat). Progress in improving dietary adherence, which is critical to both short- and long-term weight loss, could result from greater efforts to identify behavioral and metabolic phenotypes among dieters.  相似文献   
42.

Clinical guidelines recommend intensive community care service treatment (ICCS) to reduce adolescent psychiatric inpatient care. We have previously reported that the addition of ICCS led to a substantial decrease in hospital use and improved school re-integration. The aim of this study is to undertake a randomised controlled trial (RCT) comparing an inpatient admission followed by an early discharge supported by ICCS with usual inpatient admission (treatment as usual; TAU). In this paper, we report the impact of ICCS on self-harm and other clinical and educational outcomes. 106 patients aged 12–18 admitted for psychiatric inpatient care were randomised (1:1) to either ICCS or TAU. Six months after randomisation, we compared the two treatment arms on the number and severity of self-harm episodes, the functional impairment, severity of psychiatric symptoms, clinical improvement, reading and mathematical ability, weight, height and the use of psychological therapy and medication. At six-month follow-up, there were no differences between the two groups on most measures. Patients receiving ICCS were significantly less likely to report multiple episodes (five or more) of self-harm (OR = 0.18, 95% CI: 0.05–0.64). Patients admitted to private inpatient units spent on average 118.4 (95% CI: 28.2–208.6) fewer days in hospitals if they were in the ICCS group compared to TAU. The addition of ICCS to TAU may lower the risk of multiple self-harm and may reduce the duration of inpatient stay, especially in those patients admitted for private care. Early discharge with ICCS appears to be a viable alternative to standard inpatient treatment.

  相似文献   
43.
Neuroinflammation, through production of proinflammatory molecules and activated glial cells, is implicated in Alzheimer''s disease (AD) pathogenesis. One such proinflammatory mediator is tumor necrosis factor α (TNF-α), a multifunctional cytokine produced in excess and associated with amyloid β–driven inflammation and cognitive decline. Long-term global inhibition of TNF receptor type I (TNF-RI) and TNF-RII signaling without cell or stage specificity in triple-transgenic AD mice exacerbates hallmark amyloid and neurofibrillary tangle pathology. These observations revealed that long-term pan anti–TNF-α inhibition accelerates disease, cautions against long-term use of anti–TNF-α therapeutics for AD, and urges more selective regulation of TNF signaling. We used adeno-associated virus vector–delivered siRNAs to selectively knock down neuronal TNF-R signaling. We demonstrate divergent roles for neuronal TNF-RI and TNF-RII where loss of opposing TNF-RII leads to TNF-RI–mediated exacerbation of amyloid β and Tau pathology in aged triple-transgenic AD mice. Dampening of TNF-RII or TNF-RI+RII leads to a stage-independent increase in Iba-1–positive microglial staining, implying that neuronal TNF-RII may act nonautonomously on the microglial cell population. These results reveal that TNF-R signaling is complex, and it is unlikely that all cells and both receptors will respond positively to broad anti–TNF-α treatments at various stages of disease. In aggregate, these data further support the development of cell-, stage-, and/or receptor-specific anti–TNF-α therapeutics for AD.CME Accreditation Statement: This activity (“ASIP 2013 AJP CME Program in Pathogenesis”) has been planned and implemented in accordance with the Essential Areas and policies of the Accreditation Council for Continuing Medical Education (ACCME) through the joint sponsorship of the American Society for Clinical Pathology (ASCP) and the American Society for Investigative Pathology (ASIP). ASCP is accredited by the ACCME to provide continuing medical education for physicians.The ASCP designates this journal-based CME activity (“ASIP 2013 AJP CME Program in Pathogenesis”) for a maximum of 48 AMA PRA Category 1 Credit(s)™. Physicians should only claim credit commensurate with the extent of their participation in the activity.CME Disclosures: The authors of this article and the planning committee members and staff have no relevant financial relationships with commercial interests to disclose.Alzheimer''s disease (AD) pathophysiology is described by chronic and progressive neurodegeneration involving the genesis of extracellular amyloid β (Aβ) plaques, intraneuronal filamentous inclusions called neurofibrillary tangles (NFTs), synapse loss, inflammation, and neuronal cell death, ultimately leading to severe memory loss and cognitive impairment. Neuroinflammation is a highly enigmatic process contributing to disease pathogenesis in AD, where elevated levels of proinflammatory molecules have been associated with Aβ-induced inflammation, neurotoxicity, and cognitive decline.1–4 In AD-afflicted brains, microglia intimately co-localize with Aβ plaques and serve as major sources of proinflammatory mediators, including cytokines and chemokines.5 The pleiotropic proinflammatory cytokine tumor necrosis factor α (TNF-α) is produced in excess concurrently with increased Aβ plaque deposition, an observation that suggests that TNF-α levels reflect the pathologic progression of AD.6–8 Moreover, three TNF-α promoter polymorphisms have been associated with late-onset AD, and two of the three polymorphisms are linked to increased TNF-α production, further connecting this cytokine to the exacerbated chronic inflammatory disease status in AD.9 We and others have demonstrated that TNF-α expression is enhanced in AD mouse models where TNF-α is prepathologically up-regulated in 6-month-old triple-transgenic AD (3xTg-AD) mice,10,11 which corresponds with an enhancement of F4/80-positive microglial cell numbers.12 In addition, when neuron-specific TNF-α is chronically overexpressed in 3xTg-AD mice using adeno-associated virus (AAV) vectors, there is increased severity of inflammation, intracellular Aβ, and Tau pathology that leads to neuronal cell death portending that excessive and unopposed TNF-α signaling enhances AD-associated pathology and is detrimental to neuronal viability.13TNF-α signals through two cognate transmembrane receptors, TNF receptor type I (TNF-RI) and TNF-RII, which are differentially expressed and regulated. TNF-RI is expressed constitutively on most cell types, whereas TNF-RII expression is induced and is restricted to specific cell populations, including hematopoietic cells, microglia, neurons, and endothelial cells.14,15 TNF-R engagement to its ligand mediates distinct cellular responses through the activation of several downstream signal transduction cascades involving the NFκB and JNK pathways. In the context of AD, several reports demonstrate differential roles and activation of TNF-RI and TNF-RII such that genetic deletion of TNF-RI, but not TNF-RII, results in reduced plaque deposition in the APP23 mouse model.16 Moreover, in human brain tissue, TNF-RI protein levels are increased, whereas TNF-RII levels are reduced in patients with AD relative to nondemented control brain.17 Taken together, these data imply an overall negative role for excessive TNF signaling on AD pathophysiology but, perhaps more importantly, illustrate the complexity of this signaling pathway.Despite a large body of literature indicating detrimental roles for TNF-α, neuroprotective effects have also been reported. Early experiments revealed that TNF-α is protective in cultured neurons during glucose deprivation–induced injury and excitotoxicity by preserving Ca2+ homeostasis.18 Barger et al19 further demonstrated in dissociated neuronal cultures that pretreatment with TNF-α and Aβ peptide spares cells from Aβ-induced neuronal death, iron toxicity, and intracellular Ca2+ accumulation via an NF-κB–dependent mechanism. Moreover, neurons are vulnerable to ischemic injury and oxidative stress in TNF-R null mice, indicating that TNF-α is protective.20 Mice lacking TNF-R expression exhibited reduced manganese superoxide dismutase activity and lacked a robust microglial response to kainic acid.20 Similarly, cultured neurons pretreated with TNF-α resulted in a significant increase in manganese superoxide dismutase activity and a reduction in superoxide accumulation.21 These data add to the complexity of the TNF signaling pathway and suggest that strategies to modulate TNF-α in the disease setting may require selective tuning and specificity to ensure that protective signaling outcomes are not compromised.Nonetheless, given the compelling data supporting the pathologic role of TNF-α in AD, the potential of using anti–TNF-α therapeutics has become a viable strategy for subverting the disease course. Preclinical data by McAlpine et al22 demonstrate that transiently inhibiting soluble TNF signaling in the 3xTg-AD mouse model using a dominant-negative inhibitor in conjunction with enhanced systemic inflammation prevents AD-associated amyloid pathology. Tobinick et al23 reported in a short-term, prospective, open-label pilot study that semiweekly perispinal administration of etanercept, a receptor decoy biological agent antagonizing the actions of TNF-α, in 15 patients with mild to severe AD led to significant and rapid cognitive improvements compared with untreated control patients as assessed by three separate tests measuring cognitive function.Although previous studies provide evidence suggesting that TNF-α inhibition in the short-term may lead to improved pathologic and functional outcomes, they lack data addressing the long-term consequences of blocking TNF-α in a global manner, where cell, stage, and receptor specificity were not examined. To this end, we recently demonstrated that long-term global inhibition of TNF-R signaling in 3xTg-AD mice where TNF-RI and TNF-RII were ablated in all cell types results in a robust increase in hallmark amyloid and NFT pathology. Furthermore, in the absence of TNF signaling, microglia seem nonresponsive to the developing amyloid pathology, which correlates with an impairment of microglial-mediated Aβ42 phagocytosis activity in vitro.24 These data suggest that caution should be taken with the use of broad long-term anti-TNF inhibitors and that a more selective strategy should be investigated.To add to our understanding of TNF signaling biology and the consequences of selectively modulating this pathway, we investigated the cell- and stage-specific role of TNF-R signaling in AD by using recombinant AAV (rAAV) vector–delivered siRNA technology to selectively knock down neuronal TNF-R signaling at stages preceding progressive pathology or in the presence of extant disease using the 3xTg-AD mouse model. We demonstrate that neuronal TNF-RI and TNF-RII exert differential actions where intact TNF-RII signaling results in suppressed Aβ plaque deposition and paired helical filament (PHF) formation in the context of progressive and established disease pathogenesis. In addition, we report a substantial reduction in Iba-1–positive microglia when rAAV2-delivered siTNF-RII or siTNF-RI+RII viral vectors are administered at 2 and 12 months of age. Taken together, these data demonstrate that selectively suppressing neuronal TNF-RI and/or TNF-RII leads to distinct and significant changes in AD pathogenesis, which is most likely a consequence of the divergent signaling pathways associated with these receptors. The present findings support further development and rigorous study of highly selective strategies designed to inhibit specific TNF-α–mediated signals and potentially disrupt the onset and/or progression of this debilitating disease.  相似文献   
44.

Objective

Newborn screening (NBS) identifies genetic carriers for sickle cell hemoglobinopathy and cystic fibrosis. We aimed to identify factors during initial NBS carrier results disclosure by primary care providers (PCPs) that influenced parents’ experiences and reactions.

Methods

Open-ended responses from telephone interviews with 270 parents of carriers were analyzed using mixed-methods. Conventional content analysis identified influential factors; chi-square tests analyzed relationships between factors and parent-reported reactions.

Results

Parents reported positive (35%) or negative (31%) reactions to results disclosure. Parents’ experiences were influenced by specific factors: content messages (72%), PCP traits (47%), and aspects of the setting (30%). Including at least one of five specific content messages was associated (p < 0.05) with positive parental reactions; omitting at least one of four specific content messages was associated (p < 0.05) with negative parental reactions. Parents reported positive reactions when PCPs avoided jargon or were perceived as calm. Parents reported negative reactions to jargon usage and results disclosure by voicemail.

Conclusion

Parents identified aspects of PCP communication which influenced their reactions and results disclosure experiences.

Practice implications

Our findings suggest ways PCPs may improve communication of carrier results. PCPs should provide specific content messages and consider how their actions, characteristics, and setting can influence parental reactions.  相似文献   
45.
46.
47.
The objective of this study was to investigate the risk of attenuated efficacy due to adaptive resistance for the siderophore-conjugated monocarbam SMC-3176 in Pseudomonas aeruginosa by using a pharmacokinetic/pharmacodynamic (PK/PD) approach. MICs were determined in cation-adjusted Mueller-Hinton broth (MHB) and in Chelex-treated, dialyzed MHB (CDMHB). Spontaneous resistance was assessed at 2× to 16× the MIC and the resulting mutants sequenced. Efficacy was evaluated in a neutropenic mouse thigh model at 3.13 to 400 mg/kg of body weight every 3 h for 24 h and analyzed for association with free time above the MIC (fT>MIC). To closer emulate the conditions of the in vivo model, we developed a novel assay testing activity mouse whole blood (WB). All mutations were found in genes related to iron uptake: piuA, piuC, pirR, fecI, and pvdS. Against four P. aeruginosa isolates, SMC-3176 displayed predictable efficacy corresponding to the fT>MIC using the MIC in CDMHB (R2 = 0.968 to 0.985), with stasis to 2-log kill achieved at 59.4 to 81.1%. Efficacy did not translate for P. aeruginosa isolate JJ 4-36, as the in vivo responses were inconsistent with fT>MIC exposures and implied a threshold concentration that was greater than the MIC. The results of the mouse WB assay indicated that efficacy was not predictable using the MIC for JJ 4-36 and four additional isolates, against which in vivo failures of another siderophore-conjugated β-lactam were previously reported. SMC-3176 carries a risk of attenuated efficacy in P. aeruginosa due to rapid adaptive resistance preventing entry via the siderophore-mediated iron uptake systems. Substantial in vivo testing is warranted for compounds using the siderophore approach to thoroughly screen for this in vitro-in vivo disconnect in P. aeruginosa.  相似文献   
48.
49.
50.
Like other herpesviruses, human cytomegalovirus (HCMV) contains a unique proteinaceous layer between the virion envelope and capsid, termed the tegument. Upon infection, the contents of the tegument layer are delivered to the host cell, along with the capsid and the viral genome, where they facilitate the initial stages of virus replication. The tegument proteins also play important roles in virion assembly and this dual nature makes them attractive potential targets for antiviral therapies. While our knowledge regarding tegument protein function during the initiation of infection has been the subject of intense study, their roles in assembly are much less well understood. In this review, we will focus on recent studies that highlight the functions of HCMV tegument proteins during assembly, and pose key questions for further investigation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号