首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   775篇
  免费   70篇
  国内免费   1篇
耳鼻咽喉   11篇
儿科学   23篇
妇产科学   10篇
基础医学   113篇
口腔科学   4篇
临床医学   126篇
内科学   179篇
皮肤病学   3篇
神经病学   81篇
特种医学   8篇
外科学   52篇
综合类   2篇
一般理论   1篇
预防医学   112篇
眼科学   7篇
药学   64篇
中国医学   1篇
肿瘤学   49篇
  2024年   1篇
  2023年   19篇
  2022年   28篇
  2021年   70篇
  2020年   44篇
  2019年   52篇
  2018年   44篇
  2017年   38篇
  2016年   22篇
  2015年   33篇
  2014年   28篇
  2013年   48篇
  2012年   72篇
  2011年   63篇
  2010年   19篇
  2009年   16篇
  2008年   23篇
  2007年   41篇
  2006年   30篇
  2005年   23篇
  2004年   23篇
  2003年   38篇
  2002年   21篇
  2001年   6篇
  2000年   5篇
  1999年   2篇
  1998年   5篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   7篇
  1990年   7篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1973年   1篇
排序方式: 共有846条查询结果,搜索用时 15 毫秒
101.
102.
During the pandemic (H1N1) 2009 outbreak, Minnesota, New Mexico, and Oregon used several surveillance methods to detect associated deaths. Surveillance using unexplained death and medical examiner data allowed for detection of 34 (18%) pandemic (H1N1) 2009-associated deaths that were not detected by hospital-based surveillance.  相似文献   
103.
Volunteer infection studies using the induced blood stage malaria (IBSM) model have been shown to facilitate antimalarial drug development. Such studies have traditionally been undertaken in single‐dose cohorts, as many as necessary to obtain the dose‐response relationship. To enhance ethical and logistic aspects of such studies, and to reduce the number of cohorts needed to establish the dose‐response relationship, we undertook a retrospective in silico analysis of previously accrued data to improve study design. A pharmacokinetic (PK)/pharmacodynamic (PD) model was developed from initial fictive‐cohort data for OZ439 (mixing the data of the three single‐dose cohorts as: n = 2 on 100 mg, 2 on 200 mg, and 4 on 500 mg). A three‐compartment model described OZ439 PKs. Net growth of parasites was modeled using a Gompertz function and drug‐induced parasite death using a Hill function. Parameter estimates for the PK and PD models were comparable for the multidose single‐cohort vs. the pooled analysis of all cohorts. Simulations based on the multidose single‐cohort design described the complete data from the original IBSM study. The novel design allows for the ascertainment of the PK/PD relationship early in the study, providing a basis for rational dose selection for subsequent cohorts and studies.

Study Highlights
  • WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
☑ Volunteer infection studies are routinely used in antimalarial drug development to generate early pharmacokinetic/pharmacodynamic data for compounds.
  • WHAT QUESTION DID THIS STUDY ADDRESS?
☑ Can in silico analyses be used to suggest improvements to volunteer infection study designs?
  • WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
☑ Multiple dose adaptive trial designs can potentially reduce the number of cohorts needed to establish the dose‐response relationship in volunteer infection studies.
  • HOW MIGHT THIS CHANGE CLINICAL PHARMACOLOGY OR TRANSLATIONAL SCIENCE?
☑ Real time data analyses can be used to recommend doses for adaptive volunteer infection studies.

Volunteer infection studies using the induced blood stage malaria (IBSM) model have been recognized as a valuable system for defining the key pharmacokinetic (PK) and pharmacodynamic (PD) relationships for dose selection in antimalarial drug development. 1 , 2 , 3 , 4 , 5 , 6 , 7 In such studies, healthy volunteers are inoculated intravenously with a given quantity (with small variability) of Plasmodium‐infected red cells. Parasitemia is then followed by quantitative polymerase chain reaction until a prespecified treatment threshold is reached when the test drug is administered. Parasite and drug concentrations are then measured. These studies are conducted prior to phase II dose‐response (D‐R) trials and can be included in an integrated first‐in‐human study protocol, or after completion of the first‐in‐human PK and safety study. IBSM studies have been typically designed as flexible multiple cohort studies where each volunteer of one cohort receives a single dose of the same amount of drug (“single dose per cohort”). 2 , 3 , 4 , 5 After each cohort, a decision is made to stop or to add a cohort to test a lower or higher dose based on the response observed in the previous cohorts.For the multiple single‐dose‐per‐cohort design, the starting dose is typically selected based on safety and PK information from a phase I single ascending dose (SAD) study and, more recently, on preclinical data from a severe combined immunodeficient mouse model, with the dose selected on the basis of being best able to inform the D‐R relationship, rather than aiming for cure. This approach, where a single dose is tested in all subjects of the initial cohort, risks missing the dose likely to be most informative for defining the PK/PD relationship.An alternative approach is to spread a range of doses across a smaller number of subjects within the initial cohort and use PK/PD models developed based on data from this cohort to support dose selections of subsequent cohorts and studies. Using data from a previous study, 2 we undertook an in silico investigation of such an adaptive study design, aiming to reduce the number of subjects exposed to inefficacious doses, and to establish a D‐R relationship. This multiple‐dose‐groups‐per‐cohort design, referred to as the “2‐2‐4” design, is contrasted with the already implemented study design depicted in Figure  1 .Open in a separate windowFigure 1Comparison of standard and adaptive designs of IBSM studies. A/B/C, dose levels to be selected during the progress of the study based on pharmacokinetic/pharmacodynamic results of the initial cohort; CHMI, controlled human malaria infection; D‐R, dose‐response; IBSM, induced blood stage malaria infection; n, number of subjects at each dose.The objectives of this retrospective analysis were to: (i) compare PK/PD parameter estimates from the initial cohort of the 2‐2‐4 study design with the prior results from the data of the full study and (ii) propose a preliminary workflow to establish D‐R early in an IBSM study, and use modeling and simulation (M&S) to support dose selections for subsequent cohorts and later phase clinical trials.  相似文献   
104.
Electrocatalytic generation of H2 is challenging in neutral pH water, where high catalytic currents for the hydrogen evolution reaction (HER) are particularly sensitive to the proton source and solution characteristics. A tris(hydroxymethyl)aminomethane (TRIS) solution at pH 7 with a [2Fe-2S]-metallopolymer electrocatalyst gave catalytic current densities around two orders of magnitude greater than either a more conventional sodium phosphate solution or a potassium chloride (KCl) electrolyte solution. For a planar polycrystalline Pt disk electrode, a TRIS solution at pH 7 increased the catalytic current densities for H2 generation by 50 mA/cm2 at current densities over 100 mA/cm2 compared to a sodium phosphate solution. As a special feature of this study, TRIS is acting not only as the primary source of protons and the buffer of the pH, but the protonated TRIS ([TRIS-H]+) is also the sole cation of the electrolyte. A species that is simultaneously the proton source, buffer, and sole electrolyte is termed a protic buffer electrolyte (PBE). The structure–activity relationships of the TRIS PBE that increase the HER rate of the metallopolymer and platinum catalysts are discussed. These results suggest that appropriately designed PBEs can improve HER rates of any homogeneous or heterogeneous electrocatalyst system. General guidelines for selecting a PBE to improve the catalytic current density of HER systems are offered.

Molecular hydrogen (H2), a clean-burning and energy-dense fuel source, has been widely discussed as an attractive way to store intermittent energy from solar and wind through water electrolysis (1, 2). Current commercial electrolyzers can be separated into two categories based on their operating pH. The first are acidic polymer electrolyte membrane electrolyzers that work best with rare and expensive platinum-based electrocatalysts for the hydrogen evolution reaction (HER) (3). The second are strongly alkaline electrolyzers that suffer from caustic basic reaction conditions (4). Neutral pH conditions with inexpensive catalysts composed of Earth-abundant elements are a target for practical solar-to-hydrogen fuel devices due to lower cost and fewer safety concerns (5), but achieving fast rates with mild overpotentials under neutral conditions remains a challenge (612). In the pH range from 5 to 9, the electrocatalytic activity of platinum (Pt) itself does not conform to the expected thermodynamic potential shift with pH dependence of −59 mV/pH (13). This is due to the low concentration of the hydronium ion in this pH range and a transition to water as the primary reactant, which has a higher thermodynamic requirement for hydrogen evolution (13). Studies of electrocatalysts using buffers to maintain the pH in this range and ionic salts such as potassium chloride (KCl) to provide ionic strength to ensure high solution conductivity have shown that the buffer can aid the HER activity, presumably by acting as a proton donor (6, 1418). To extend the scope of water-soluble electrocatalysts, biopolymers and bioinspired metallopolymer catalysts have also been studied (7, 12, 1726). Bren and coworkers recently reported particularly enlightening studies of the effects of buffer pKa and structure on the mechanism of the hydrogen evolution reaction for cobalt minienzymes (17, 18).We recently reported a new metallopolymer catalyst system built around a customized [2Fe-2S] catalyst site with a bridging aryldithiolato ligand which exhibits remarkable catalytic activity, air stability, and chemical stability (21). The electrocatalytic mechanism of the [2Fe-2S] catalysts with aryldithiolato ligands is known from previous studies and these catalysts operate at rates of 105 s−1 and faster (2730). The readily synthesized and water-soluble metallopolymer composed of tertiary amine side-chain groups, PDMAEMA-g-[2Fe-2S] (Fig. 1), approached the current density of Pt operating in neutral water under the same conditions and matched the Faradaic yield (97 ± 3%) (21). Although the detailed structural and mechanistic causality of these profound improvements for these metallopolymer electrocatalysts remain subjects of study, the nature of this molecular system is ideal for studying solution effects on the HER reaction at neutral pH for complexes that are normally insoluble in water. In the course of characterizing these electrocatalysts, solutions containing tris(hydroxymethyl)aminomethane (TRIS) at pH 7 were discovered to be exceptionally advantageous to the catalytic rate. In contrast to the few previous studies of TRIS buffer with electrocatalysts (14, 15, 18), we utilized TRIS at a high concentration. At pH 7, TRIS is sufficiently in the cationic protonated form that additional electrolyte such as KCl is not needed for conductance. This important distinction from conventional studies allows TRIS to simultaneously play the roles of pH buffer, proton source, and sole electrolyte. There is precedence in employing buffers in a manner in which they are the sole electrolyte (7, 3134). Referring to such species simply as a “buffer” or as an “electrolyte” is inadequate in representing the three functions including proton source. For the purposes of this paper we term a species that serves all three functions a protic buffer electrolyte (PBE). In the following discussion, a TRIS PBE solution is one in which [TRIS-H]+Cl is the sole electrolyte and the cation is a proton source, and a sodium phosphate PBE solution is one in which Na+[H2PO4] is the sole electrolyte and the anion is a proton source.Open in a separate windowFig. 1.(A) Depiction of the 2e electrocatalytic HER with POEGMA-g-[2Fe-2S] and/or PDMAEMA-g-[2Fe-2S] metallopolymers using TRIS or sodium phosphate protic buffer electrolytes at pH 7. (B) Image of POEGMA-g-[2Fe-2S] with MW = 14,216 grown in silico. The [2Fe-2S] active site is in the center of the polymer, blue represents the polymer backbone, and the rest are the oligo(ethylene glycol) side chains. See SI Appendix for the details of modeling and a larger image.One of the key unanswered questions for these new catalyst systems is whether the metallopolymer composition (i.e., amine side-chain groups) or the PBEs are more important to afford this outstanding catalytic activity. Herein we study the effects of PBEs by comparing the HER performances of a standard platinum catalyst and a [2Fe-2S] metallopolymer catalyst in TRIS PBE solutions, sodium phosphate PBE solutions, and a KCl electrolyte solution without a PBE. For this study, nonionic water-soluble metallopolymers were used, which were made using oligo(ethylene glycol) side-chain groups on the polymer to avoid the possibility of contributing effects of the protonated amino groups of PDMAEMA-g-[2Fe-2S] referred to earlier. The metallopolymer catalyst used in this work is designated as POEGMA-g-[2Fe-2S] (Fig. 1). We previously reported that this water-soluble metallopolymer was largely inactive for H2 electrocatalysis at neutral pH in phosphate buffer (22). The current findings suggest that the use of electrolytes composed of inexpensive cationic organic proton donors can be readily applied to any homogeneous or heterogeneous electrocatalyst system as a facile means to enhance HER activity.  相似文献   
105.
106.
Introduction: Prior research examining self-awareness of deficits in those with mild cognitive impairment (MCI) has been inconsistent, suggesting that preservation of insight at this disease stage may be conditional on the domain(s) examined as well as individual characteristics. The current study is the first to examine differences in objective performance and self-awareness of difficulties between older adults with amnestic single- (MCI–ASD) and multidomain MCI (MCI–AMD) across six instrumental activities of daily living (IADLs).

Method: Seventy-five individuals (Mage = 73.9 years, range = 55–88 years; 56% female) with MCI–ASD (n = 30) and MCI–AMD (n = 45) were recruited primarily from a hospital-based memory disorders clinic. Participants were administered self-report and objective measures assessing six functional domains: financial management, driving, telephone use, nutrition evaluation, grocery shopping, and medication management. Self-awareness discrepancy scores were calculated for each of these IADLs, and participants were classified as either “overestimating ability” or “accurately/underestimating ability.”

Results: Individuals with MCI–AMD performed significantly worse on objective measures of financial management, driving, and nutrition evaluation than those with MCI–ASD. Across MCI subtypes, participants were most likely to lack awareness of their difficulties in nutrition evaluation (31%), financial management (25%), and driving (23%) domains. Individuals with MCI–AMD were significantly more likely than those with MCI–ASD to overestimate performance on driving and telephone use domains.

Conclusion: Individuals with MCI–AMD are more likely than those with MCI–ASD to have impairment in their everyday function and to lack awareness into their IADL difficulties. When possible, clinicians should obtain objective measures in combination with detailed informant reports of functional abilities in order to evaluate capacity to independently engage in various daily activities. Finally, level of self-awareness varies across IADL domains, providing further evidence that insight is not a unitary construct.  相似文献   

107.
This study examines absolute hair cell numbers in the cristae of C57BL/6J mice and CBA/CaJ mice from weaning to adulthood as well as the dose required for 3,3′-iminodiproprionitrile (IDPN)-injury of the cristae in C57BL/6J mice and CBA/CaJ mice, the two mouse strains most commonly used by inner ear researchers. In cristae of CBA/CaJ and C57BL/6J mice, no loss of hair cells was observed up to 24 weeks. In both strains, dose-dependent loss of hair cells was observed 7 days after IDPN treatment of 2-month-old mice (IC50?=?16.1 mmol/kg in C57BL/6J mice vs. 25.21 mmol/kg in CBA/CaJ mice). Four-month-old C57BL/6J mice exposed to IDPN developed dose-dependent vestibular dysfunction as indicated by increased activity and circling behavior in open field tests and by failure to swim 7 days after treatment. IDPN-hair cell injury in C57BL/6J mice and CBA/CaJ mice represents a fast and predictable experimental model for the study of vestibular degeneration and a platform for the testing of vestibular therapies.  相似文献   
108.
Discrimination and violence against sex workers by police are common in many populations and are associated with negative health outcomes, as well as being per se violations of human rights laws and norms. There is a close and mutually reinforcing nexus between legally actionable rights violations and stigma, and reducing human rights violations against sex workers likely requires both legal and societal interventions that address both. In this paper, we first aim to estimate levels of discrimination, violence, and stigma against women sex workers by police in Kenya. Second, we aim to estimate the association between manifestations of discrimination and stigma, on the one hand, and general health care utilization and consistent condom use, on the other. Using data from a survey of Kenyan sex workers, we document widespread discrimination and stigma. Through regression analyses, participants with the highest levels of all three categories of manifestations of discrimination and stigma reported significant lower consistent condom use. Those with the highest levels of witnessed/heard manifestations were significantly more likely to delay or avoid needed health care, and the highest level of experienced manifestations were associated with a marginally significant increase in delay or avoidance. Our findings document a plethora of violations of human rights obligations under Kenyan and international law.  相似文献   
109.
110.
  1. Vasomotor function of the vascular endothelium was examined in human subcutaneous arteries excised from 8 hypercholesterolaemic and 7 normolipidaemic subjects.
  2. Left gluteal skin biopsies were performed under local anaesthesia. Subcutaneous arteries were isolated and two vessels from each subject mounted in separate myographs. A 20 ml fasting blood sample was taken at the time of the biopsy.
  3. Hypercholesterolaemic subjects had either never been treated with lipid lowering therapy or therapy had been stopped at least two weeks before the study (n=2). At the time of the study total plasma cholesterol levels (control: 4.6±0.3 vs hypercholesterolaemic: 8.3±0.6 mmol l−1: P<0.01) were significantly elevated in hypercholesterolaemic subjects when compared with controls.
  4. Full concentration-response curves to the vasoconstrictor noradrenaline and the vasodilators acetylcholine and substance P were constructed. A single point concentration-response to sodium nitroprusside (10 μM) was also obtained. Dilator responses were obtained in vessels pre-constricted with a submaximal concentration of noradrenaline. Vessels were then incubated for 30 min with either L- or D-arginine (10 μM) and the concentration-response curves to the three dilator agonists repeated in the presence of the amino acid.
  5. Maximum relaxation responses to acetylcholine (control vs hypercholesterolaemic: 83.3±6.1% vs 47.4±13.5%; P<0.05), but not to substance P or sodium nitroprusside, were dampened in the hypercholesterolaemic group when compared with controls.
  6. Neither incubation with L-arginine nor D-arginine had any effect on maximum relaxation responses to acetylcholine in either the control group (pre L-arginine vs plus L-arginine: 83.3±6.1 vs 82.3±5.5%, pre D-arginine vs plus D-arginine: 98.9±1.2 vs 98.2±1.1%) or the hypercholesterolaemic group (pre L-arginine vs plus L-arginine: 47.4±13.5 vs 55.3±14.3%, pre D-arginine vs plus D-argenine: 43.3±13.6 vs 65.4±12.3%).
  7. When results from the two study groups were pooled, the strongest predictor of maximum relaxation obtained to acetylcholine was apolipoprotein A1 (r=0.67; P=0.001).
  8. In conclusion, relaxation responses mediated by the endothelium-dependent agonist acetylcholine, but not by substance P, are impaired in hypercholesterolaemic patients. L-Arginine did not improve the impaired relaxation responses to acetylcholine. We suggest that impaired endothelium-dependent relaxation is specific to acetylcholine and not to an abnormal L-arginine-nitric oxide pathway in subcutaneous arteries excised from this study group.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号