首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2507988篇
  免费   205798篇
  国内免费   4638篇
耳鼻咽喉   36170篇
儿科学   77157篇
妇产科学   66000篇
基础医学   352470篇
口腔科学   73925篇
临床医学   228958篇
内科学   496081篇
皮肤病学   51141篇
神经病学   212304篇
特种医学   99548篇
外国民族医学   904篇
外科学   375472篇
综合类   57512篇
现状与发展   2篇
一般理论   1060篇
预防医学   207349篇
眼科学   57900篇
药学   185882篇
  4篇
中国医学   4939篇
肿瘤学   133646篇
  2019年   20458篇
  2018年   28520篇
  2017年   21958篇
  2016年   23614篇
  2015年   26813篇
  2014年   38305篇
  2013年   57227篇
  2012年   78405篇
  2011年   82589篇
  2010年   47802篇
  2009年   45392篇
  2008年   76709篇
  2007年   81464篇
  2006年   81759篇
  2005年   79947篇
  2004年   76791篇
  2003年   73704篇
  2002年   71376篇
  2001年   114762篇
  2000年   118652篇
  1999年   100348篇
  1998年   29016篇
  1997年   26463篇
  1996年   26282篇
  1995年   25304篇
  1994年   23858篇
  1993年   22273篇
  1992年   80558篇
  1991年   77534篇
  1990年   74599篇
  1989年   71870篇
  1988年   66793篇
  1987年   65693篇
  1986年   62187篇
  1985年   59224篇
  1984年   44882篇
  1983年   38191篇
  1982年   23251篇
  1981年   20667篇
  1979年   41768篇
  1978年   29291篇
  1977年   24629篇
  1976年   23064篇
  1975年   24250篇
  1974年   29928篇
  1973年   28318篇
  1972年   26459篇
  1971年   24358篇
  1970年   22986篇
  1969年   21335篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
91.
The identification of EGFR mutations in non‐small‐cell lung cancer is important for selecting patients, who may benefit from treatment with EGFR tyrosine kinase inhibitors. The analysis is usually performed on cytological aspirates and/or histological needle biopsies, representing a small fraction of the tumour volume. The aim of the present investigation was to evaluate the diagnostic performance of this molecular test. We retrospectively included 201 patients with primary adenocarcinoma of the lung. EGFR mutation status (exon 19 deletions and exon 21 L858R point mutation) was evaluated on both pre‐operative biopsies (131 histological and 70 cytological) and on the surgical specimens, using PCR. Samples with low tumour cell fraction were assigned to laser micro‐dissection (LMD). We found nine (4.5%) patients with EGFR mutation in the lung tumour resections, but failed to identify mutation in one of the corresponding pre‐operative, cytological specimens. Several (18.4%) analyses of the pre‐operative biopsies were inconclusive, especially in case of biopsies undergoing LMD and regarding exon 21 analysis. Discrepancy of mutation status in one patient may reflect intra‐tumoural heterogeneity or technical issues. Moreover, several inconclusive results in the diagnostic biopsies reveal that attention must be paid on the suitability of pre‐operative biopsies for EGFR mutation analysis.  相似文献   
92.
93.
94.
95.
96.
The value of adding simeprevir (SMV) vs placebo (PBO) to peginterferon and ribavirin (PR) for treatment of chronic hepatitis C virus infection was examined using patient‐reported outcomes (PROs); further, concordance of PROs with virology endpoints and adverse events (AEs) was explored. Patients (= 768 SMV/PR,= 393 PBO/PR) rated fatigue (FSS), depressive symptoms (CES‐D) and functional impairment (WPAI: Hepatitis C Productivity, Daily Activity and Absenteeism) at baseline and throughout treatment in three randomised, double‐blind trials comparing the addition of SMV or PBO during initial 12 weeks of PR. PR was administered for 48 weeks (PBO group) and 24/48 weeks (SMV group) using a response‐guided therapy (RGT) approach. Mean PRO scores (except Absenteeism) worsened from baseline to Week 4 to the same extent in both groups but reverted after Week 24 for SMV/PR and only after Week 48 for PBO/PR. Accordingly, there was a significantly lower area under the curve (baseline–Week 60, AUC60) and fewer weeks with clinically important worsening of scores in the SMV/PR group at any time point. Incidences of patients with fatigue and anaemia AEs were similar in both groups, but FSS scores showed that clinically important increases in fatigue lasted a mean of 6.9 weeks longer with PBO/PR (P < 0.001). PRO score subgroup analysis indicated better outcomes for patients who met the criteria for RGT or achieved sustained virological response 12 weeks post‐treatment (SVR12); differences in mean PRO scores associated with fibrosis level were only observed with PBO/PR. Greater efficacy of SMV/PR enabled reduced treatment duration and reduced time with PR‐related AEs without adding to AE severity.  相似文献   
97.
98.
99.
100.
BACKGROUND AND PURPOSE:Accurate and reliable detection of white matter hyperintensities and their volume quantification can provide valuable clinical information to assess neurologic disease progression. In this work, a stacked generalization ensemble of orthogonal 3D convolutional neural networks, StackGen-Net, is explored for improving automated detection of white matter hyperintensities in 3D T2-FLAIR images.MATERIALS AND METHODS:Individual convolutional neural networks in StackGen-Net were trained on 2.5D patches from orthogonal reformatting of 3D-FLAIR (n = 21) to yield white matter hyperintensity posteriors. A meta convolutional neural network was trained to learn the functional mapping from orthogonal white matter hyperintensity posteriors to the final white matter hyperintensity prediction. The impact of training data and architecture choices on white matter hyperintensity segmentation performance was systematically evaluated on a test cohort (n = 9). The segmentation performance of StackGen-Net was compared with state-of-the-art convolutional neural network techniques on an independent test cohort from the Alzheimer’s Disease Neuroimaging Initiative-3 (n = 20).RESULTS:StackGen-Net outperformed individual convolutional neural networks in the ensemble and their combination using averaging or majority voting. In a comparison with state-of-the-art white matter hyperintensity segmentation techniques, StackGen-Net achieved a significantly higher Dice score (0.76 [SD, 0.08], F1-lesion (0.74 [SD, 0.13]), and area under precision-recall curve (0.84 [SD, 0.09]), and the lowest absolute volume difference (13.3% [SD, 9.1%]). StackGen-Net performance in Dice scores (median = 0.74) did not significantly differ (P = .22) from interobserver (median = 0.73) variability between 2 experienced neuroradiologists. We found no significant difference (P = .15) in white matter hyperintensity lesion volumes from StackGen-Net predictions and ground truth annotations.CONCLUSIONS:A stacked generalization of convolutional neural networks, utilizing multiplanar lesion information using 2.5D spatial context, greatly improved the segmentation performance of StackGen-Net compared with traditional ensemble techniques and some state-of-the-art deep learning models for 3D-FLAIR.

White matter hyperintensities (WMHs) correspond to pathologic features of axonal degeneration, demyelination, and gliosis observed within cerebral white matter.1 Clinically, the extent of WMHs in the brain has been associated with cognitive impairment, Alzheimer’s disease and vascular dementia, and increased risk of stroke.2,3 The detection and quantification of WMH volumes to monitor lesion burden evolution and its correlation with clinical outcomes have been of interest in clinical research.4,5 Although the extent of WMHs can be visually scored,6 the categoric nature of such scoring systems makes quantitative evaluation of disease progression difficult. Manually segmenting WMHs is tedious, prone to inter- and intraobserver variability, and is, in most cases, impractical. Thus, there is an increased interest in developing fast, accurate, and reliable computer-aided automated techniques for WMH segmentation.Convolutional neural network (CNN)-based approaches have been successful in several semantic segmentation tasks in medical imaging.7 Recent works have proposed using deep learning–based methods for segmenting WMHs using 2D-FLAIR images.8-11 More recently, a WMH segmentation challenge12 was also organized (http://wmh.isi.uu.nl/) to facilitate comparison of automated segmentation of WMHs of presumed vascular origin in 2D multislice T2-FLAIR images. Architectures that used an ensemble of separately trained CNNs showed promising results in this challenge, with 3 of the top 5 winners using ensemble-based techniques.12Conventional 2D-FLAIR images are typically acquired with thick slices (3–4 mm) and possible slice gaps. Partial volume effects from a thick slice are likely to affect the detection of smaller lesions, both in-plane and out-of-plane. 3D-FLAIR images, with isotropic resolution, have been shown to achieve higher resolution and contrast-to-noise ratio13 and have shown promising results in MS lesion detection using 3D CNNs.14 Additionally, the isotropic resolution enables viewing and evaluation of the images in multiple planes. This multiplanar reformatting of 3D-FLAIR without the use of interpolating kernels is only possible due to the isotropic nature of the acquisition. Network architectures that use information from the 3 orthogonal views have been explored in recent works for CNN-based segmentation of 3D MR imaging data.15 The use of data from multiple planes allows more spatial context during training without the computational burden associated with full 3D training.16 The use of 3 orthogonal views simultaneously mirrors how humans approach this segmentation task.Ensembles of CNNs have been shown to average away the variances in the solution and the choice of model- and configuration-specific behaviors of CNNs.17 Traditionally, the solutions from these separately trained CNNs are combined by averaging or using a majority consensus. In this work, we propose the use of a stacked generalization framework (StackGen-Net) for combining multiplanar lesion information from 3D CNN ensembles to improve the detection of WMH lesions in 3D-FLAIR. A stacked generalization18 framework learns to combine solutions from individual CNNs in the ensemble. We systematically evaluated the performance of this framework and compared it with traditional ensemble techniques, such as averaging or majority voting, and state-of-the-art deep learning techniques.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号