首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   755篇
  免费   54篇
  国内免费   4篇
耳鼻咽喉   4篇
儿科学   12篇
妇产科学   9篇
基础医学   133篇
口腔科学   8篇
临床医学   88篇
内科学   208篇
皮肤病学   5篇
神经病学   43篇
特种医学   21篇
外科学   74篇
综合类   3篇
预防医学   82篇
眼科学   31篇
药学   30篇
肿瘤学   62篇
  2024年   1篇
  2023年   2篇
  2022年   14篇
  2021年   13篇
  2020年   10篇
  2019年   21篇
  2018年   26篇
  2017年   15篇
  2016年   24篇
  2015年   33篇
  2014年   43篇
  2013年   53篇
  2012年   67篇
  2011年   81篇
  2010年   35篇
  2009年   35篇
  2008年   63篇
  2007年   57篇
  2006年   52篇
  2005年   41篇
  2004年   31篇
  2003年   28篇
  2002年   27篇
  2001年   2篇
  2000年   7篇
  1999年   8篇
  1998年   5篇
  1997年   1篇
  1996年   6篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1990年   3篇
  1988年   1篇
  1987年   1篇
  1954年   1篇
排序方式: 共有813条查询结果,搜索用时 15 毫秒
81.
Diastolic dysfunction is general to all idiopathic dilated (IDCM) and hypertrophic cardiomyopathy (HCM) patients. Relaxation deficits may result from increased actin–myosin formation during diastole due to altered tropomyosin position, which blocks myosin binding to actin in the absence of Ca2+. We investigated whether ADP-stimulated force development (without Ca2+) can be used to reveal changes in actin–myosin blockade in human cardiomyopathy cardiomyocytes. Cardiac samples from HCM patients, harboring thick-filament (MYH7mut, MYBPC3mut) and thin-filament (TNNT2mut, TNNI3mut) mutations, and IDCM were compared with sarcomere mutation-negative HCM (HCMsmn) and nonfailing donors. Myofilament ADP sensitivity was higher in IDCM and HCM compared with donors, whereas it was lower for MYBPC3. Increased ADP sensitivity in IDCM, HCMsmn, and MYH7mut was caused by low phosphorylation of myofilament proteins, as it was normalized to donors by protein kinase A (PKA) treatment. Troponin exchange experiments in a TNNT2mut sample corrected the abnormal actin–myosin blockade. In MYBPC3trunc samples, ADP sensitivity highly correlated with cardiac myosin-binding protein-C (cMyBP-C) protein level. Incubation of cardiomyocytes with cMyBP-C antibody against the actin-binding N-terminal region reduced ADP sensitivity, indicative of cMyBP-C’s role in actin–myosin regulation. In the presence of Ca2+, ADP increased myofilament force development and sarcomere stiffness. Enhanced sarcomere stiffness in sarcomere mutation-positive HCM samples was irrespective of the phosphorylation background. In conclusion, ADP-stimulated contraction can be used as a tool to study how protein phosphorylation and mutant proteins alter accessibility of myosin binding on actin. In the presence of Ca2+, pathologic [ADP] and low PKA-phosphorylation, high actin–myosin formation could contribute to the impaired myocardial relaxation observed in cardiomyopathies.Heart failure (HF) is a syndrome clinically defined as the inability of the heart to sufficiently supply blood to organs and tissues (1). Systolic dysfunction is present in approximately one-half of the HF population, whereas diastolic dysfunction is a common feature in almost all HF patients (2). Moreover, in hypertrophic cardiomyopathy (HCM), which is caused by mutations in genes encoding thin- and thick-filament proteins, impaired diastolic function is frequently observed (3). Impaired relaxation of the heart may be caused by high myofilament Ca2+ sensitivity. This increased sensitivity for Ca2+ would result in residual myofilament activation at diastolic [Ca2+], which may delay the onset of ventricular relaxation and limit proper filling of the heart. High myofilament Ca2+ sensitivity has been observed in both acquired and genetic forms of cardiomyopathy (3, 4). In human idiopathic dilated cardiomyopathy (IDCM), high myofilament Ca2+ sensitivity has been associated with reduced β-adrenergic receptor-mediated phosphorylation by protein kinase A (PKA) (4). Reduced PKA phosphorylation of cardiac troponin I (cTnI) and cardiac myosin-binding protein C (cMyBP-C) increases myofilament Ca2+ sensitivity (58). Likewise, high myofilament Ca2+ sensitivity is a common characteristic of HCM and may be caused by the mutant protein or by reduced PKA-mediated protein phosphorylation secondary to HCM disease progression (3, 9).Contractile performance of the heart muscle may thus be perturbed by mutation-induced and phosphorylation-mediated protein changes that affect thin-filament transitions. Ca2+-induced cardiac muscle contraction is tightly modulated by the troponin–tropomyosin complex that regulates the interactions between the actin thin filament and myosin thick filament (i.e., cross-bridge formation). Accordingly, the myofilaments oscillate between three transitions termed the blocked (B-state), closed (C-state), and open (M-state) states of thin-filament regulation that represent the distinct position of tropomyosin on actin (1012) (Fig. 1). In the absence of Ca2+ (B state), tropomyosin sterically blocks the myosin-binding sites on actin (Fig. 1A). Upon electrical activation of cardiomyocytes, the rise of cytosolic [Ca2+] alters the conformation of the troponin–tropomyosin complex, which moves tropomyosin on actin and exposes myosin-binding sites (C state). Weakly bound cross-bridges (myosin-ADP-Pi) populate the C state (10, 12) (Fig. 1B). Transition to the M state involves release of inorganic phosphate (Pi) from the cross-bridge and strong-binding cross-bridge formation (myosin-ADP) that induces additional movement of tropomyosin, resulting in myofilament contraction and sliding (Fig. 1C).Open in a separate windowFig. 1.Three-state model of thin-filament activation. Seven actin monomers (circles), spanned by one tropomyosin dimer (red strand), together with the troponin complex (not depicted) comprise one functional unit (A7TmTn). Two functional units are depicted, and individual myosins are shown as triangles (weak, weak-binding cross-bridges; strong, strong-binding cross-bridges). (A) B state (blocked); when ATP is present and cytoplasmic [Ca2+] is low and is not bound to cardiac troponin C (cTnC), tropomyosin is sterically blocking the myosin-binding sites on actin. (B) C state (Ca2+-induced); upon rise in cytoplasmic [Ca2+], Ca2+ binds to cTnC, inducing conformational changes of the troponin complex, resulting in a ∼25° movement of tropomyosin on the thin filament, thereby exposing myosin-binding sites on actin. In the C state, the myofilament is not yet activated as non–tension-generating cross-bridges bind weakly to actin. (C) M state (myosin induced); the strong binding of tension-generating cross-bridges induces a ∼10° movement of tropomyosin on actin, resulting in myofilament activation and contraction.The three-state model of cross-bridge interaction implies that the main task of Ca2+ is to uncover myosin-binding sites on actin and that formation of myosin-ADP represents the main regulator of force development and contraction. Notably, solution (10) and cryo-electron microscopy (13) studies have shown that in the absence of Ca2+ the myofilaments are not entirely blocked, as ∼5% of the thin filaments have tropomyosin localized in the C-state position. This observation suggests that conditions that promote myosin-ADP formation can trigger myofilament contraction in Ca2+-free conditions and thereby impair relaxation. Indeed, in membrane-permeabilized rabbit skeletal muscle fibers (14), bovine myocardium (15, 16) and human cardiac muscle (17) millimolar levels of ADP stimulate force development in the absence of Ca2+.Because ADP-stimulated contraction is due to myosin-ADP binding to the nonblocked sites of the thin filament in the absence of Ca2+, it provides an experimental tool to assess changes in tropomyosin’s position in acquired and genetic cardiomyopathies in which altered protein phosphorylation and mutant proteins may alter myofilament activation. In addition, it could represent a pathomechanism underlying the diastolic dysfunction seen in both disease states. Solution studies with mutant troponin proteins, which are known to cause HCM, showed a reduction in the B state at low-Ca2+ conditions compared with wild-type troponin proteins (18, 19). Mutation-induced irregularities in troponin–tropomyosin interactions disrupt the B state and shift the thin filament to the C state, increasing the available myosin-binding sites on actin.In addition to Ca2+-induced changes of the thin filament, tropomyosin location may also be altered by the thick-filament protein cMyBP-C. Recent evidence supports that the N-terminal extension of cMyBP-C binds the low-Ca2+–state (B-state) position of tropomyosin on actin and interferes with tropomyosin–actin interactions, dislocating tropomyosin into the C-state position (i.e., the presence of cMyBP-C sensitizes the thin filament to Ca2+) (20, 21). Because it was previously shown that in Ca2+-free conditions (B state) ∼5% of the thin filaments (lacking cMyBP-C) have tropomyosin localized in the C-state position (10), more myofilaments may be in the C state in the presence of cMyBP-C. We (22) and others (23) have shown that cMyBP-C mutations, which are a major cause of HCM, have a reduced level of healthy cMyBP-C protein compared with nonfailing hearts (i.e., haploinsufficiency), which may alter tropomyosin position on the thin filament.To verify whether ADP-stimulated contraction provides an experimental tool to assess mutation-induced and phosphorylation-mediated changes in thin-filament transitions, which precede Ca2+ activation of myofilaments, we tested the following hypotheses: (i) that IDCM and HCM samples with thin-filament mutations are more sensitive to ADP, as a result of a higher accessibility of myosin-binding sites on actin, whereas (ii) cMyBP-C haploinsufficient HCM myocardium has a reduced ADP sensitivity (i.e., less cMyBP-C causes reduced displacement of tropomyosin from the B state) compared with cells from nonfailing hearts. To answer our hypotheses, we activated membrane-permeabilized human cardiomyocytes in ADP containing Ca2+-free solutions. Cells were isolated from HCM patients with mutations in genes encoding thick-filament (MYH7, MYBPC3) and thin-filament (TNNT2, TNNI3) proteins and patients with IDCM and compared with cells from sarcomere mutation-negative HCM (HCMsmn) and nonfailing donors. Finally, we investigated whether the ADP level as observed in diseased hearts, in the presence of Ca2+, increases myofilament force development in cardiomyocytes from human cardiomyopathy hearts.We conclude that, in HCM with thin-filament mutations, tropomyosin’s ability to block myosin-binding sites on actin is reduced. This effect is exacerbated in HCM samples by the low PKA phosphorylation of myofilament proteins, which is also observed in human IDCM. In contrast, cMyBP-C HCM-causing mutations reduce accessibility of myosin for actin. The findings in this study provide evidence that ADP-mediated activation can be used as an experimental tool to reveal mutation- and phosphorylation-mediated changes in tropomyosin location on the thin filament.  相似文献   
82.
83.
PurposeTo examine how weight information labels on variously sized media models affect (pre)adolescent girls' body perceptions and how they compare themselves with media models.MethodsWe used a three (body shape: extremely thin vs. thin vs. normal weight) × three (information label: 6-kg underweight vs. 3-kg underweight vs. normal weight) experimental design in three age-groups (9–10 years, 12–13 years, and 15–16 years; n = 184). The girls completed questionnaires after exposure to media models.ResultsWeight information labels affected girls' body dissatisfaction, social comparison with media figures, and objectified body consciousness. Respondents exposed to an extremely thin body shape labeled to be of “normal weight” were most dissatisfied with their own bodies and showed highest levels of objectified body consciousness and comparison with media figures. An extremely thin body shape combined with a corresponding label (i.e., 6-kg underweight), however, induced less body dissatisfaction and less comparison with the media model. Age differences were also found to affect body perceptions: adolescent girls showed more negative body perceptions than preadolescents.ConclusionsWeight information labels may counteract the generally media-induced thin-body ideal. That is, when the weight labels appropriately informed the respondents about the actual thinness of the media model's body shape, girls were less affected. Weight information labels also instigated a normalization effect when a “normal-weight” label was attached to underweight-sized media models. Presenting underweight as a normal body shape, clearly increased body dissatisfaction in girls. Results also suggest age between preadolescence and adolescence as a critical criterion in responding to media models' body shape.  相似文献   
84.
85.
Consumption of a range of dietary antioxidants may be beneficial in protecting low density lipoprotein (LDL) against oxidative modification, as studies have demonstrated that antioxidants other than vitamin E may also function against oxidation of LDL in vitro. In the present study, the effect of polyphenol antioxidants on the susceptibility of LDL to copper-mediated oxidation was investigated after feeding semi-purified diets to 3 groups of New Zealand white (NZW) rabbits. All diets comprised 40% energy as fat with 17% energy as oleic acid. Dietary fatty acid compositions were identical. Oils with different polyphenol contents were used to provide the dietary source of oleic acid — refined olive oil, extra virgin olive oil and Trisun high oleic sunflower seed oil. Polyphenolic compounds (hydroxytyrosol and p-tyrosol) could only be detected in the extra virgin olive oil. Vitamin E was equalised in all diets. LDL oxidizability in vitro was determined by continuously monitoring the copper-induced formation of conjugated dienes after 6 weeks of experimental diet feeding. The lag phase before demonstrable oxidation occurred was significantly increased in the high polyphenol, extra virgin olive oil group (P < 0.05) when compared with combined results from the low polyphenol group (refined olive oil and Trisun), even though the LDL vitamin E concentration in the high polyphenol group was significantly lower. The rate of conjugated diene formation was not influenced by the presence of dietary polyphenols. Results demonstrate that antioxidants, possibly phenolic compounds which are present only in extra virgin olive oil, may contribute to the endogenous antioxidant capacity of LDL, resulting in an increased resistance to oxidation as determined in vitro.  相似文献   
86.
87.
88.
89.
90.

Purpose

The purpose of this study was to examine changes in the prevalence of exercise intolerance, reduced muscle strength, and fatigue and the changes in these parameters in individual patients during a 2-year follow-up study.

Methods

Ninety sarcoidosis patients (62 males and 28 females; mean age: 46.0 ± 10.2 years) participated in a 2-year follow-up study. At the baseline and follow-up measurements, patients performed a 6-min walk test and elbow flexor muscle strength, quadriceps peak torque, and hamstrings peak torque tests. Maximal inspiratory pressure was recorded. All patients completed the Fatigue Assessment Scale.

Results

Both at baseline and follow-up, a substantial proportion of the patients showed a reduced 6-minute walk test (41.6 and 34.8 %, respectively), elbow flexor muscle strength (6.7 and 14.6 %), quadriceps peak torque (21.3 and 18 %), hamstrings peak torque (13.5 and 12.4 %), and maximal inspiratory pressure (45.9 and 48.6 %). The majority of the patients reported fatigue (86 and 77 %). These physical impairments remained stable during the follow-up period. The prevalence of these physical impairments in patients diagnosed with sarcoidosis <2 years before inclusion in this study was similar to that in patients with a longer history of the disease.

Conclusions

Exercise intolerance, muscle weakness, and fatigue are frequent problems in symptomatic sarcoidosis patients with a stable and persistent character. This study highlights that beyond medical treatment a rehabilitation program should be considered as adjunct therapy in the multidisciplinary management of sarcoidosis patients even though the achieved benefit needs future studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号