首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4711篇
  免费   278篇
  国内免费   29篇
耳鼻咽喉   45篇
儿科学   133篇
妇产科学   130篇
基础医学   811篇
口腔科学   77篇
临床医学   481篇
内科学   888篇
皮肤病学   158篇
神经病学   563篇
特种医学   156篇
外科学   335篇
综合类   43篇
一般理论   3篇
预防医学   353篇
眼科学   73篇
药学   402篇
中国医学   43篇
肿瘤学   324篇
  2023年   44篇
  2022年   120篇
  2021年   209篇
  2020年   109篇
  2019年   168篇
  2018年   147篇
  2017年   106篇
  2016年   151篇
  2015年   149篇
  2014年   215篇
  2013年   253篇
  2012年   433篇
  2011年   458篇
  2010年   254篇
  2009年   175篇
  2008年   348篇
  2007年   318篇
  2006年   272篇
  2005年   245篇
  2004年   205篇
  2003年   175篇
  2002年   160篇
  2001年   40篇
  2000年   23篇
  1999年   40篇
  1998年   33篇
  1997年   18篇
  1996年   11篇
  1995年   12篇
  1994年   14篇
  1993年   6篇
  1992年   6篇
  1991年   6篇
  1990年   5篇
  1988年   4篇
  1987年   4篇
  1986年   5篇
  1985年   4篇
  1984年   5篇
  1983年   5篇
  1982年   4篇
  1981年   6篇
  1980年   4篇
  1979年   5篇
  1978年   7篇
  1977年   3篇
  1975年   4篇
  1974年   5篇
  1973年   3篇
  1971年   3篇
排序方式: 共有5018条查询结果,搜索用时 15 毫秒
61.
62.
Double orifice mitral valve; a coincidental finding.   总被引:1,自引:0,他引:1  
A double orifice mitral valve (DOMV) represents a rare congenital malformation characterised by two valve orifices with two separate subvalvular apparatus. This case demonstrates the necessity of careful imaging of the mitral valve apparatus, not only in patients with atrioventricular septal defects, but also in patients with congenital left obstructive heart disease.  相似文献   
63.
64.
Pantothenamides inhibit blood-stage Plasmodium falciparum with potencies (50% inhibitory concentration [IC50], ∼20 nM) similar to that of chloroquine. They target processes dependent on pantothenate, a precursor of the essential metabolic cofactor coenzyme A. However, their antiplasmodial activity is reduced due to degradation by serum pantetheinase. Minor modification of the pantothenamide structure led to the identification of α-methyl-N-phenethyl-pantothenamide, a pantothenamide resistant to degradation, with excellent antiplasmodial activity (IC50, 52 ± 6 nM), target specificity, and low toxicity.  相似文献   
65.
This contribution discusses the ablation phenomena observed during laser treatment of carbon fiber-reinforced plastics (CFRPs) with pulsed lasers observed employing laser sources with wavelengths of 355 nm, 1064 nm and 10.6 µm and pulse durations from picoseconds (11 ps) to microseconds (14 µs) are analyzed and discussed. In particular, the threshold fluence of the matrix material epoxy (EP) and the damage threshold of CFRP were calculated. Moreover, two general surface pretreatment strategies are investigated, including selective matrix removal and structure generation through indentation (ablation of both, matrix material and fibers) with a cross-like morphology. The surfaces obtained after the laser treatment are characterized by means of optical and scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy is employed for the analysis of composite and constituent materials epoxy and carbon fibers. As a result, different ablation mechanisms, including evaporation and delamination are observed, depending on the employed laser wavelength and pulse duration. For both 355 nm and 1064 nm wavelength, the laser radiation produces only partial ablation of the carbon fibers due to their higher absorption coefficient compared to the epoxy matrix. Although a selective matrix removal without residues is achieved using the pulsed CO2 laser. Differently, both constituent materials are ablated with the nanosecond pulsed UV laser, producing indentations. The sum of the investigations has shown that existing theories of laser technology, such as the ablation threshold according to Liu et al., can be applied to composite materials only to a limited extent. Furthermore, it has been found that the pronounced heterogeneity of CFRP mostly leads to an inhomogeneous ablation result, both when creating grooves and during selective matrix removal, where the carbon fibers influence the ablation result by their thermal conductivity, depending on fiber direction. Finally, despite the material inhomogeneity, a scanning strategy has been developed to compensate the heterogeneous ablation results regarding structure depth, width and heat affected zone.  相似文献   
66.
In this work we report the use of benzophenone (BP) for the synthesis of a palladium (Pd) embedded on reduced graphene oxide (rGO) nanocomposite (Pd/rGO) using a simple aqueous solution and UV irradiation. The simple and facile evolution of thermodynamically unstable branched Pd(0) nanodendrites was achieved by BP photoactivation, circumventing the growth of more stable nanomorphologies. The synthesis of Pd(0)-embedded rGO nanosheets (PRGO-nd) was made possible by the simultaneous reduction of both the GO scaffold and PdCl2 by introducing BP into the photoactivation reaction. The nanocomposites obtained in the absence of BP were common triangular and twinned Pd(0) structures which were also implanted on the rGO scaffold (PRGO-nt). The disparity in morphologies presumably occurs due to the difference in the kinetics of the reduction of Pd2+ to Pd0 in the presence and absence of the BP photoinitiator. It was observed that the PRGO-nd was composed of dense arrays of multiple Pd branches around nucleation site which exhibited (111) facet, whereas PRGO-nt showed a mixture of (100) and (111) facets. On comparing the catalytic efficiencies of the as-synthesized nanocatalysts, we observed a superiority in efficiency of the thermodynamically unstable PRGO-nd nanocomposite. This is due to the evolved active facets of the dendritic Pd(0) morphology with its higher surface area, as testified by Brunauer–Emmett–Teller (BET) analysis. Since both PRGO-nd and PRGO-nt contain particles of similar size, the dents and grooves in the structure are the cause of the increase in the effective surface area in the case of nanodendrites. The unique dendritic morphology of the PRGO-nd nanostructures makes them a promising material for superior catalysis, due to their high surface area, and the high density of surface atoms at their edges, corners, and stepped regions. We investigated the efficiency of the as-prepared PRGO-nd catalyst in the Suzuki–Miyaura coupling reaction and showed its proficiency in a 2 h reaction at 60 °C using 2 mol% catalyst containing 0.06 mol% active Pd. Moreover, the electrochemical efficiency for the catalytic hydrogen evolution reaction (HER) was demonstrated, in which PRGO-nd provided a decreased overpotential of 68 mV for a current density of 10 mA cm−2, a small Tafel slope of 57 mV dec−1 and commendable stability during chronoamperometric testing for 5 h.

Benzophenone photoinitiator aided synthesis of Pd-nanodendrite embedded rGO nanocatalyst possessing superior potential in C–C coupling reaction and fuel cell application.  相似文献   
67.
Pyruvate kinase (PK) deficiency is an iron‐loading anaemia characterized by chronic haemolysis, ineffective erythropoiesis and a requirement for blood transfusion in most cases. We studied 11 patients from 10 unrelated families and found nine different disease‐causing PKLR mutations. Two of these mutations ‐ the point mutation c.878A>T (p.Asp293Val) and the frameshift deletion c.1553delG (p.(Arg518Leufs*12)) ‐ have not been previously described in the literature. This frameshift deletion was associated with an unusually severe phenotype involving neonatal hyperferritinaemia that is not typical of PK deficiency. No disease‐causing mutations in genes associated with haemochromatosis could be found. Inappropriately low levels of hepcidin with respect to iron loading were detected in all PK‐deficient patients with increased ferritin, confirming the predominant effect of accelerated erythropoiesis on hepcidin production. Although the levels of a putative hepcidin suppressor, growth differentiation factor‐15, were increased in PK‐deficient patients, no negative correlation with hepcidin was found. This result indicates the existence of another as‐yet unidentified erythroid regulator of hepcidin synthesis in PK deficiency.  相似文献   
68.
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号