首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   288篇
  免费   31篇
  国内免费   1篇
耳鼻咽喉   1篇
儿科学   10篇
妇产科学   12篇
基础医学   38篇
口腔科学   2篇
临床医学   29篇
内科学   75篇
皮肤病学   7篇
神经病学   59篇
特种医学   2篇
外科学   20篇
综合类   1篇
预防医学   9篇
眼科学   10篇
药学   10篇
肿瘤学   35篇
  2024年   1篇
  2023年   4篇
  2022年   3篇
  2021年   13篇
  2020年   5篇
  2019年   9篇
  2018年   14篇
  2017年   13篇
  2016年   18篇
  2015年   9篇
  2014年   21篇
  2013年   14篇
  2012年   26篇
  2011年   19篇
  2010年   11篇
  2009年   11篇
  2008年   12篇
  2007年   13篇
  2006年   18篇
  2005年   13篇
  2004年   15篇
  2003年   9篇
  2002年   12篇
  2001年   3篇
  2000年   3篇
  1999年   7篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1987年   2篇
  1986年   1篇
  1985年   3篇
  1983年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有320条查询结果,搜索用时 15 毫秒
311.
Precise RNA processing is fundamental to all small RNA-mediated interference pathways. In prokaryotes, clustered, regularly interspaced, short palindromic repeats (CRISPR) loci encode small CRISPR RNAs (crRNAs) that protect against invasive genetic elements by antisense targeting. CRISPR loci are transcribed as a long precursor that is cleaved within repeat sequences by CRISPR-associated (Cas) proteins. In many organisms, this primary processing generates crRNA intermediates that are subject to additional nucleolytic trimming to render mature crRNAs of specific lengths. The molecular mechanisms underlying this maturation event remain poorly understood. Here, we defined the genetic requirements for crRNA primary processing and maturation in Staphylococcus epidermidis. We show that changes in the position of the primary processing site result in extended or diminished maturation to generate mature crRNAs of constant length. These results indicate that crRNA maturation occurs by a ruler mechanism anchored at the primary processing site. We also show that maturation is mediated by specific cas genes distinct from those genes involved in primary processing, showing that this event is directed by CRISPR/Cas loci.  相似文献   
312.
313.
The lymphatic system is involved in various biological processes, including fluid transport from the interstitium into the venous circulation, lipid absorption, and immune cell trafficking. Despite its critical role in homeostasis, lymphangiogenesis (lymphatic vessel formation) is less widely studied than its counterpart, angiogenesis (blood vessel formation). Although the incorporation of lymphatic vasculature in engineered tissues or organoids would enable more precise mimicry of native tissue, few studies have focused on creating engineered tissues containing lymphatic vessels. Here, we populated thick collagen sheets with human lymphatic endothelial cells, combined with supporting cells and blood endothelial cells, and examined lymphangiogenesis within the resulting constructs. Our model required just a few days to develop a functional lymphatic vessel network, in contrast to other reported models requiring several weeks. Coculture of lymphatic endothelial cells with the appropriate supporting cells and intact PDGFR-β signaling proved essential for the lymphangiogenesis process. Additionally, subjecting the constructs to cyclic stretch enabled the creation of complex muscle tissue aligned with the lymphatic and blood vessel networks, more precisely biomimicking native tissue. Interestingly, the response of developing lymphatic vessels to tensile forces was different from that of blood vessels; while blood vessels oriented perpendicularly to the stretch direction, lymphatic vessels mostly oriented in parallel to the stretch direction. Implantation of the engineered lymphatic constructs into a mouse abdominal wall muscle resulted in anastomosis between host and implant lymphatic vasculatures, demonstrating the engineered construct''s potential functionality in vivo. Overall, this model provides a potential platform for investigating lymphangiogenesis and lymphatic disease mechanisms.

The lymphatic and blood vascular systems are two distinct vessel network systems that work in synchrony to maintain tissue homeostasis. Blood vessels transport oxygen and nutrients around the body, while lymphatic vessels collect leaked fluid and macromolecules from the interstitial space and return them to the blood circulation, maintaining interstitial fluid homeostasis (1). Furthermore, the lymphatic system plays a central role in immune responses, inflammation regulation, and lipid absorption (2). While many in vitro models have been created to study angiogenesis, fewer attempts have been made to engineer an in vitro platform to study lymphangiogenesis. Such engineered models are critical for both fundamental research and the development of clinically implantable tissue to treat various diseases involving the lymphatic system. One such disease is lymphedema, a chronic condition that affects 200 million people worldwide (3). Lymphedema is characterized by tissue swelling resulting from a compromised lymphatic system. The condition is mainly caused by complications during cancer treatment but may also develop due to genetic disorders. The condition is progressive and incurable, with a high risk of infection. Implantation of engineered lymphatic tissue can serve as a treatment for such disease (4).Lymph flow is primarily driven by pressures generated by lymphatic contractions of the smooth muscle cells surrounding the vessels (5). Impaired contractility thus reduces lymph flow and may cause lymphedema. Previous computational studies have investigated the correlation between lymphatic vessel contractility and mechanical stimulation, such as mechanical loading, pressure gradients, and shear stress amplitudes (6, 7). Furthermore, studies have investigated lymphatic vessel capacity to distend under mechanical loading conditions. In addition, the microenvironment composition has been shown to play an important role in enabling lymphatic vessel functionality (4).Thus far, several groups have been able to engineer lymphatic tissues. Marino et al. created dermo-epidermal skin grafts with lymphatic and blood vessels embedded in a fibrin-collagen gel (8). Others created a lymphatic vessel network within multilayered fibroblast sheets (9, 10). Another study demonstrated that different hydrogel compositions are required for the optimal growth and development of blood and lymphatic endothelial cells (BECs and LECs, respectively) (11). However, no studies have investigated the influence of the supporting cells, the secreted extracellular matrix (ECM), and the mechanical environment on the forming lymphatic vessels. Since lymphatic pathologies are known to correlate with mechanically impaired lymphatic vessels (4), it is important to create lymphatic models with a biomimetic microenvironment.In this study, lymphatic vessel networks were engineered to investigate fundamental questions concerning lymphangiogenesis, including the influence of different supporting cells on the formation of lymphatic vessels and the role of PDGFR-β, an important receptor associated with support cells recruitment, in vessel formation. In addition, a complex tissue designed to better mimic native tissue was generated and lymphatic and blood vessel development along with muscle formation were monitored. In addition, the impact of the application of cyclic stretch on the organization and alignment of lymphatic-blood-vessel-muscle tissue was assessed. Finally, the penetration and anastomosis of the engineered lymphatic vessels were monitored following their implantation into mice.  相似文献   
314.
Eye exposure to the organophosphorus (OP) irreversible acetylcholinesterase inhibitor sarin results in long-term miosis and reduction in visual function. Anticholinergic drugs, such as atropine or homatropine, which are used topically in order to counter these effects may produce mydriasis and partial cycloplegia, which may worsen visual performance. This study was aimed to test the efficacy of short-acting anticholinergic drugs against sarin-induced miosis and visual impairment, which will minimally insult vision. Long-Evans rats, exposed topically to various sarin doses from 0 to 10 μg, showed a dose-dependent miosis, which returned to pre-exposure levels within 24-48 h. Tropicamide treatment rapidly widened the miotic effect to a different extent depending on time following treatment and dosage given. Cyclopentolate, however, showed a delayed response that finally widened the pupils in a dose-dependent manner. Atropine treatment showed a rapid widening of the pinpoint pupils exceeding baseline level finally causing mydriasis. Light reflex test showed that the contraction ability of the iris following atropine treatment was impaired, as opposed to the use of tropicamide which facilitated the iris contraction, similar to control. Finally, tropicamide and atropine treatments ameliorated the visual impairment, as opposed to cyclopentolate, which worsened visual performance. Considering that tropicamide treatment against sarin exposure did not cause mydriasis nor did it impair the iris contraction flexibility as a response to light, the use of this drug should be taken into consideration as a first-choice topical treatment against OP intoxication.  相似文献   
315.
Second malignancies are a significant concern for survivors of childhood acute lymphoblastic leukemia (ALL), in particular patients who have been treated with cranial irradiation. Brain tumors, most commonly meningiomas, are among the most common second neoplasms discovered in these patients. Breast cancer can occur in association with meningioma, but is not thought to be a consequence of treatment for childhood ALL. We describe the molecular genetics and therapy of childhood ALL, the molecular genetics of meningioma, as well as the possible association between meningioma and breast cancer.  相似文献   
316.
Fetal MR imaging     
Ultrasonography is the primary prenatal screening modality used in the evaluation of the fetus and the maternal pelvis. However, fetal MR imaging plays a complementary role to prenatal ultrasound in the evaluation of the fetus with suspected abnormalities. MR imaging's role includes confirming or excluding possible lesions, defining their full extent, aiding in their characterization, and demonstrating other associated abnormalities. As newer techniques such as diffusion imaging, MR spectroscopy, and functional studies are used more widely, it is hoped that additional information will be made available by this modality to physicians evaluating and taking care of fetuses.  相似文献   
317.
318.

Background

Cognitive deficits in Parkinson's disease (PD) patients are well described, however, their underlying neural mechanisms as assessed by electrophysiology are not clear.

Objectives

To reveal specific neural network alterations during the performance of cognitive tasks in PD patients using electroencephalography (EEG).

Methods

Ninety participants, 60 PD patients and 30 controls underwent EEG recording while performing a GO/NOGO task. Source localization of 16 regions of interest known to play a pivotal role in GO/NOGO task was performed to assess power density and connectivity within this cognitive network. The connectivity matrices were evaluated using a graph-theory approach that included measures of cluster-coefficient, degree, and global-efficiency. A mixed-model analysis, corrected for age and levodopa equivalent daily dose was performed to examine neural changes between PD patients and controls.

Results

PD patients performed worse in the GO/NOGO task (P < 0.001). The power density was higher in δ and θ bands, but lower in α and β bands in PD patients compared to controls (interaction group × band: P < 0.001), indicating a general slowness within the network. Patients had more connections within the network (P < 0.034) than controls and these were used for graph-theory analysis. Differences between groups in graph-theory measures were found only in cluster-coefficient, which was higher in PD compared to controls (interaction group × band: P < 0.001).

Conclusions

Cognitive deficits in PD are underlined by alterations at the brain network level, including higher δ and θ activity, lower α and β activity, increased connectivity, and segregated network organization. These findings may have important implications on future adaptive deep brain stimulation. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.  相似文献   
319.
320.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号