首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   688篇
  免费   38篇
  国内免费   1篇
耳鼻咽喉   3篇
儿科学   18篇
妇产科学   29篇
基础医学   59篇
口腔科学   3篇
临床医学   51篇
内科学   188篇
皮肤病学   3篇
神经病学   33篇
特种医学   14篇
外科学   178篇
综合类   6篇
预防医学   83篇
眼科学   3篇
药学   8篇
肿瘤学   48篇
  2022年   4篇
  2021年   17篇
  2019年   13篇
  2018年   12篇
  2017年   8篇
  2016年   8篇
  2015年   11篇
  2014年   12篇
  2013年   20篇
  2012年   46篇
  2011年   19篇
  2010年   26篇
  2009年   15篇
  2008年   25篇
  2007年   31篇
  2006年   28篇
  2005年   25篇
  2004年   21篇
  2003年   25篇
  2002年   23篇
  2001年   19篇
  2000年   18篇
  1999年   9篇
  1998年   7篇
  1996年   4篇
  1995年   5篇
  1993年   6篇
  1992年   5篇
  1991年   9篇
  1990年   12篇
  1989年   10篇
  1988年   11篇
  1987年   18篇
  1986年   25篇
  1985年   18篇
  1984年   4篇
  1983年   14篇
  1982年   9篇
  1981年   8篇
  1980年   6篇
  1979年   11篇
  1978年   12篇
  1977年   8篇
  1976年   10篇
  1975年   22篇
  1974年   10篇
  1973年   9篇
  1972年   7篇
  1971年   7篇
  1966年   5篇
排序方式: 共有727条查询结果,搜索用时 15 毫秒
11.
PURPOSE: To develop a guideline for the use of sentinel node biopsy (SNB) in early stage breast cancer. METHODS: An American Society of Clinical Oncology (ASCO) Expert Panel conducted a systematic review of the literature available through February 2004 on the use of SNB in early-stage breast cancer. The panel developed a guideline for clinicians and patients regarding the appropriate use of a sentinel lymph node identification and sampling procedure from hereon referred to as SNB. The guideline was reviewed by selected experts in the field and the ASCO Health Services Committee and was approved by the ASCO Board of Directors. RESULTS: The literature review identified one published prospective randomized controlled trial in which SNB was compared with axillary lymph node dissection (ALND), four limited meta-analyses, and 69 published single-institution and multicenter trials in which the test performance of SNB was evaluated with respect to the results of ALND (completion axillary dissection). There are currently no data on the effect of SLN biopsy on long-term survival of patients with breast cancer. However, a review of the available evidence demonstrates that, when performed by experienced clinicians, SNB appears to be a safe and acceptably accurate method for identifying early-stage breast cancer without involvement of the axillary lymph nodes. CONCLUSION: SNB is an appropriate initial alternative to routine staging ALND for patients with early-stage breast cancer with clinically negative axillary nodes. Completion ALND remains standard treatment for patients with axillary metastases identified on SNB. Appropriately identified patients with negative results of SNB, when done under the direction of an experienced surgeon, need not have completion ALND. Isolated cancer cells detected by pathologic examination of the SLN with use of specialized techniques are currently of unknown clinical significance. Although such specialized techniques are often used, they are not a required part of SLN evaluation for breast cancer at this time. Data suggest that SNB is associated with less morbidity than ALND, but the comparative effects of these two approaches on tumor recurrence or patient survival are unknown.  相似文献   
12.
13.
14.
15.
Speciation is a continuous process during which genetic changes gradually accumulate in the genomes of diverging species. Recent studies have documented highly heterogeneous differentiation landscapes, with distinct regions of elevated differentiation (“differentiation islands”) widespread across genomes. However, it remains unclear which processes drive the evolution of differentiation islands; how the differentiation landscape evolves as speciation advances; and ultimately, how differentiation islands are related to speciation. Here, we addressed these questions based on population genetic analyses of 200 resequenced genomes from 10 populations of four Ficedula flycatcher sister species. We show that a heterogeneous differentiation landscape starts emerging among populations within species, and differentiation islands evolve recurrently in the very same genomic regions among independent lineages. Contrary to expectations from models that interpret differentiation islands as genomic regions involved in reproductive isolation that are shielded from gene flow, patterns of sequence divergence (dxy and relative node depth) do not support a major role of gene flow in the evolution of the differentiation landscape in these species. Instead, as predicted by models of linked selection, genome-wide variation in diversity and differentiation can be explained by variation in recombination rate and the density of targets for selection. We thus conclude that the heterogeneous landscape of differentiation in Ficedula flycatchers evolves mainly as the result of background selection and selective sweeps in genomic regions of low recombination. Our results emphasize the necessity of incorporating linked selection as a null model to identify genome regions involved in adaptation and speciation.Uncovering the genetic architecture of reproductive isolation and its evolutionary history are central tasks in evolutionary biology. The identification of genome regions that are highly differentiated between closely related species, and thereby constitute candidate regions involved in reproductive isolation, has recently been a major focus of speciation genetic research. Studies from a broad taxonomic range, involving organisms as diverse as plants (Renaut et al. 2013), insects (Turner et al. 2005; Lawniczak et al. 2010; Nadeau et al. 2012; Soria-Carrasco et al. 2014), fishes (Jones et al. 2012), mammals (Harr 2006), and birds (Ellegren et al. 2012) contribute to the emerging picture of a genomic landscape of differentiation that is usually highly heterogeneous, with regions of locally elevated differentiation (“differentiation islands”) widely spread over the genome. However, the evolutionary processes driving the evolution of the differentiation landscape and the role of differentiation islands in speciation are subject to controversy (Turner and Hahn 2010; Cruickshank and Hahn 2014; Pennisi 2014).Differentiation islands were originally interpreted as “speciation islands,” regions that harbor genetic variants involved in reproductive isolation and are shielded from gene flow by selection (Turner et al. 2005; Soria-Carrasco et al. 2014). During speciation-with-gene-flow, speciation islands were suggested to evolve through selective sweeps of locally adapted variants and by hitchhiking of physically linked neutral variation (“divergence hitchhiking”) (Via and West 2008); gene flow would keep differentiation in the remainder of the genome at bay (Nosil 2008; Nosil et al. 2008). In a similar way, speciation islands can arise by allopatric speciation followed by secondary contact. In this case, genome-wide differentiation increases during periods of geographic isolation, but upon secondary contact, it is reduced by gene flow in genome regions not involved in reproductive isolation. In the absence of gene flow in allopatry, speciation islands need not (but can) evolve by local adaptation, but may consist of intrinsic incompatibilities sensu Bateson-Dobzhansky-Muller (Bateson 1909; Dobzhansky 1937; Muller 1940) that accumulated in spatially isolated populations.However, whether differentiation islands represent speciation islands has been questioned. Rather than being a cause of speciation, differentiation islands might evolve only after the onset of reproductive isolation as a consequence of locally accelerated lineage sorting (Noor and Bennett 2009; Turner and Hahn 2010; White et al. 2010; Cruickshank and Hahn 2014; Renaut et al. 2014), such as in regions of low recombination (Nachman 2002; Sella et al. 2009; Cutter and Payseur 2013). In these regions, the diversity-reducing effects of both positive selection and purifying selection (background selection [BGS]) at linked sites (“linked selection”) impact physically larger regions due to the stronger linkage among sites. The thereby locally reduced effective population size (Ne) will enhance genetic drift and hence inevitably lead to increased differentiation among populations and species.These alternative models for the evolution of a heterogeneous genomic landscape of differentiation are not mutually exclusive, and their population genetic footprints can be difficult to discern. In the cases of (primary) speciation-with-gene-flow and gene flow at secondary contact, shared variation outside differentiation islands partly stems from gene flow. In contrast, under linked selection, ancestral variation is reduced and differentiation elevated in regions of low recombination, while the remainder of the genome may still share considerable amounts of ancestral genetic variation and show limited differentiation. Many commonly used population genetic statistics do not capture these different origins of shared genetic variation and have the same qualitative expectations under both models, such as reduced diversity (π) and skews toward an excess of rare variants (e.g., lower Tajima''s D) in differentiation islands relative to the remainder of the genome. However, since speciation islands should evolve by the prevention or breakdown of differentiation by gene flow in regions not involved in reproductive isolation, substantial gene flow should be detectable in these regions (Cruickshank and Hahn 2014) and manifested in the form of reduced sequence divergence (dxy) or as an excess of shared derived alleles in cases of asymmetrical gene flow (Patterson et al. 2012). Under linked selection, predictions are opposite for dxy (Cruickshank and Hahn 2014), owing to reduced ancestral diversity in low-recombination regions. Further predictions for linked selection include positive and negative relationships of recombination rate with genetic diversity (π) and differentiation (FST), respectively, and inverse correlations of the latter two with the density of targets for selection. Finally, important insights into the nature of differentiation islands may be gained by studying the evolution of differentiation landscapes across the speciation continuum. Theoretical models and simulations of speciation-with-gene-flow predict that after an initial phase during which differentiation establishes in regions involved in adaptation, differentiation should start spreading from these regions across the entire genome (Feder et al. 2012, 2014; Flaxman et al. 2013).Unravelling the processes driving the evolution of the genomic landscape of differentiation, and hence understanding how genome differentiation unfolds as speciation advances, requires genome-wide data at multiple stages of the speciation continuum and in a range of geographical settings from allopatry to sympatry (Seehausen et al. 2014). Although studies of the speciation continuum are emerging (Hendry et al. 2009; Kronforst et al. 2013; Shaw and Mullen 2014, and references therein), empirical examples of genome differentiation at multiple levels of species divergence remain scarce (Andrew and Rieseberg 2013; Kronforst et al. 2013; Martin et al. 2013), and to our knowledge, have so far not jointly addressed the predictions of alternative models for the evolution of the genomic landscape of differentiation. In the present study, we implemented such a study design encompassing multiple populations of four black-and-white flycatcher sister species of the genus Ficedula (Fig. 1A,B; Supplemental Fig. S1; for a comprehensive reconstruction of the species tree, see Nater et al. 2015). Previous analyses in collared flycatcher (F. albicollis) and pied flycatcher (F. hypoleuca) revealed a highly heterogeneous differentiation landscape across the genome (Ellegren et al. 2012). An involvement of gene flow in its evolution would be plausible, as hybrids between these species occur at low frequencies in sympatric populations in eastern Central Europe and on the Baltic Islands of Gotland and Öland (Alatalo et al. 1990; Sætre et al. 1999), although a recent study based on genome-wide markers identified no hybrids beyond the F1 generation (Kawakami et al. 2014a). Still, gene flow from pied into collared flycatcher appears to have occurred (Borge et al. 2005; Backström et al. 2013; Nadachowska-Brzyska et al. 2013) despite premating isolation (for review, see Sætre and Sæther 2010), hybrid female sterility (Alatalo et al. 1990; Tegelström and Gelter 1990), and strongly reduced long-term fitness of hybrid males (Wiley et al. 2009). Atlas flycatcher (F. speculigera) and semicollared flycatcher (F. semitorquata) are two closely related species, which have been less studied, but may provide interesting insights into how genome differentiation evolves over time. Here, we take advantage of this system to identify the processes underlying the evolution of differentiation islands based on the population genetic analysis of whole-genome resequencing data of 200 flycatchers.Open in a separate windowFigure 1.A recurrently evolving genomic landscape of differentiation across the speciation continuum in Ficedula flycatchers. (A) Species’ neighbor-joining tree based on mean genome-wide net sequence divergence (dA). The same species tree topology was inferred with 100% bootstrap support from the distribution of gene trees under the multispecies coalescent (Supplemental Fig. S1). (B) Map showing the locations of population sampling and approximate species ranges. (C) Population genomic parameters along an example chromosome (Chromosome 4A) (see Supplemental Figs. S2, S4 for all chromosomes). Color codes for specific–specific parameters: (blue) collared; (green) pied; (orange) Atlas; (red) semicollared. Color codes for dxy: (green) collared-pied; (light blue) collared-Atlas; (blue) collared-semicollared; (orange) pied-Atlas; (red) pied-semicollared; (black) Atlas-semicollared. For differentiation within species, comparisons with the Italian (collared) and Spanish (pied) populations are shown. Color codes for FST within collared flycatchers: (cyan) Italy–Hungary; (light blue) Italy–Czech Republic; (dark blue) Italy–Baltic. Color codes for FST within pied flycatchers: (light green) Spain–Sweden; (green) Spain–Czech Republic; (dark green) Spain–Baltic. (D) Distributions of differentiation (FST) from collared flycatcher along the speciation continuum. Distributions are given separately for three autosomal recombination percentiles (33%; 33%–66%; 66%–100%) corresponding to high (>3.4 cM/Mb, blue), intermediate (1.3–3.4 cM/Mb, orange), and low recombination rate (0–1.3 cM/Mb, red), and the Z Chromosome (green). Geographically close within-species comparison: Italy–Hungary. Comparisons within species include the geographically close Italian and Hungarian populations (within [close]), and the geographically distant Italian and Baltic populations (within [far]). Geographically far within-species comparison: Italy–Baltic. (E) Differentiation from collared flycatcher along an example chromosome (Chromosome 11) (see Supplemental Fig. S3 for all chromosomes). Color codes for between-species comparisons: (green) pied; (orange) Atlas; (red) semicollared; (dark red) red-breasted; (black) snowy-browed flycatcher. Color codes for within-species comparisons: (cyan) Italy–Hungary; (blue) Italy–Baltic. Flycatcher artwork in panel A courtesy of Dan Zetterström.  相似文献   
16.
17.
To determine the characteristics of QT interval dispersion using orthogonal ECG leads with high paper speed (100 mm/s) and high voltage gain (10 cm/mV) as compared to conventional 12-lead ECG, we measured the QT dispersion in 57 patients at rest and directly after exercise using these two techniques. The measurements were repeated by the same observer and by an independent observer in 29 patients to assess reproducibility. QT dispersion was found to be significantly lower in orthogonal leads than standard lead tracings (24+/-20 ms versus 44+/-17 ms at rest, P<0.001; 29+/-21 ms versus 53+/-27 ms after exercise, P<0.001, respectively). The intrasubject and interobserver reproducibility was better for the orthogonal lead tracings, making this technique a potentially useful tool for future research.  相似文献   
18.
Drainage of the inferior vena cava to the left atrium is an extremely unusual congenital heart disease. We describe a 54-year-old woman, in whom the diagnosis was suggested by transthoracic echocardiography, and then confirmed by a transesophageal exam and magnetic resonance imaging, which also revealed an associated secundum atrial septal defect. Surgical management involved reconstruction of the interatrial septum to include the inferior vena cava in the right atrium. The few previously reported cases in the literature are reviewed.  相似文献   
19.
20.
Alcohol-induced septal ablation (AISA) is an accepted treatment for hypertrophic cardiomyopathy (HCM) patients with left ventricular (LV) outflow obstruction who are unresponsive to medical therapy. As left atrial (LA) enlargement has been correlated with increased morbidity and mortality in HCM, we assessed LA volumes and ejection fraction (EF) prior to and after AISA using real time three-dimensional (3D) transthoracic echocardiography (TTE) in 12 patients (9 women; mean age 52 ± 15 years; 11 Caucasian). All patients underwent successful AISA with no complications and their resting left ventricular outflow gradients decreased from 40.5 ± 22.2 to 9.1 ± 17.6 mmHg (P < 0.001) while their gradients with provocation decreased from 126.2 ± 31.7 to 21.8 ± 28.0 mmHg (P < 0.001). All patients showed improvements in their New York Heart Association (NYHA) functional class. Both the LA end-systolic (45.2 ± 12.9 to 37.2 ± 13.7 ml, P < 0.0001) and end-diastolic (79.6 ± 18.9 to 77.1 ± 18.6 ml, P = 0.001) volumes decreased after AISA. The LA EF increased from 43.1 ± 9.0 to 52.5 ± 8.8% (P = 0.001). The increase in LA EF correlated with the decrease in the resting left ventricular outflow gradient (R =−0.647, P = 0.03). In conclusion, 3D echocardiography can be utilized to follow LA function after AISA for HCM. AISA results in clinical improvement in patients with HCM and in improvement of LA EF that is correlated with the decrease in the left ventricular outflow gradient.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号