首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   158篇
  免费   8篇
儿科学   1篇
基础医学   27篇
临床医学   15篇
内科学   15篇
神经病学   89篇
外科学   9篇
综合类   1篇
预防医学   5篇
眼科学   2篇
药学   1篇
肿瘤学   1篇
  2024年   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2017年   4篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   4篇
  2012年   13篇
  2011年   9篇
  2010年   6篇
  2009年   5篇
  2008年   8篇
  2007年   12篇
  2006年   11篇
  2005年   12篇
  2004年   9篇
  2003年   17篇
  2002年   13篇
  2001年   5篇
  2000年   6篇
  1999年   3篇
  1998年   1篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1960年   1篇
  1958年   2篇
  1927年   1篇
  1925年   1篇
排序方式: 共有166条查询结果,搜索用时 15 毫秒
21.
22.
One of the fundamental characteristics of spatial neglect is an imbalanced visual search behaviour favouring stimuli on the right side of space while largely ignoring those on the left side. Opinions differ as to whether this reflects a general orientational bias caused by impaired supramodal body-centred reference systems, or a modality-specific search disorder. A prediction of the former model would be that exploratory activity is similarly impaired both in vision and in the absence of visual control. We addressed this hypothesis by comparing patients' visual and tactile search in the same workspace. Our results show that the centre of exploration activity in both modalities was substantially shifted towards the ipsilesional right side in the neglect group as compared to healthy and patient controls. This bias was more accentuated for visual search. We found a clear linear relationship between the visual and tactile search biases in the patient group with spatial neglect. Our finding suggests that the critical component guiding search behaviour in neglect, whether visually or tactually, is a general rightward orientation bias. In addition, we observed an increased repetition rate in both modalities which affected the whole workspace. This implies that the apparent spatial working memory deficit dissociates from the mechanisms inducing the orientation bias.  相似文献   
23.
Lesions of the parieto-occipital junction (POJ) in humans cause gross deviations of reaching movements and impaired grip formation if the targets are located in the subjects' peripheral visual field. Movements to central targets are typically less impaired. This disorder has been termed "optic ataxia". It has been suggested that a general deficit of online corrections under central as well as peripheral viewing conditions might be sufficient to explain this discrepancy. According to this hypothesis, patients with optic ataxia should demonstrate an impaired online correction of grip aperture under central viewing conditions if the target object changes its size during the grasping movement. We investigated this prediction in a patient with optic ataxia (I.G.) in a virtual visuo-haptic grasping task. We imposed an isolated need for online corrections of the hand aperture independently of positional changes of the target object. While we found some general inaccuracies of her grasping movements, the patient did not show a specific impairment of online adjustment of grip aperture. On the contrary, I.G. smoothly adjusted her grip aperture comparable to healthy subjects. A general deficit of fast movement correction affecting targets in peripheral as well as central visual fields thus does not appear to account for the overt visuomotor deficits in optic ataxia. Rather, it seems more likely that an anatomical dissociation between visuomotor pathways related to actions in the central and in the peripheral visual field underlies the dissociation of visuomotor performance depending on the retinotopic target position in optic ataxia.  相似文献   
24.
Grouping processes enable the coherent perception of our environment. A number of brain areas has been suggested to be involved in the integration of elements into objects including early and higher visual areas along the ventral visual pathway as well as motion-processing areas of the dorsal visual pathway. However, integration not only is required for the cortical representation of individual objects, but is also essential for the perception of more complex visual scenes consisting of several different objects and/or shapes. The present fMRI experiments aimed to address such integration processes. We investigated the neural correlates underlying the global Gestalt perception of hierarchically organized stimuli that allowed parametrical degrading of the object at the global level. The comparison of intact versus disturbed perception of the global Gestalt revealed a network of cortical areas including the temporo-parietal junction (TPJ), anterior cingulate cortex and the precuneus. The TPJ location corresponds well with the areas known to be typically lesioned in stroke patients with simultanagnosia following bilateral brain damage. These patients typically show a deficit in identifying the global Gestalt of a visual scene. Further, we found the closest relation between behavioral performance and fMRI activation for the TPJ. Our data thus argue for a significant role of the TPJ in human global Gestalt perception.  相似文献   
25.
Revill KP  Karnath HO  Rorden C 《NeuroImage》2011,57(2):476-481
Individuals with spatial neglect following brain injury often show biased performance on landmark bisection tasks (judging if a single item is transected at its midpoint) and search tasks (where they seek target(s) from an array of items). Interestingly, it appears that bisection deficits dissociate from other measures of neglect (including search tasks), and neglect patients with bisection deficits typically have more posterior injury than those without these symptoms. While previous studies in healthy adults have examined each of these tasks independently, our aim was to directly contrast brain activity between these two tasks. Our design used displays that were interpreted as landmark bisection stimuli in some blocks of trials and as search arrays on other trials. Therefore, we used a design where low-level perceptual and motor responses were identical across tasks. Both tasks generated significant activity in bilateral midfusiform gyrus, largely right lateralized activity in the posterior parietal cortex, left lateralized activity in the left motor cortex (consistent with right handed response) and generally right lateralized insular activation. Several brain areas showed task-selective activations when the two tasks were directly compared. Specifically, the superior parietal cortex was selectively activated during the landmark task. On the other hand, the search task caused stronger bilateral activation in the anterior insula, along with midfusiform gyrus, medial superior frontal areas, thalamus and right putamen. This work demonstrates that healthy adults show an anatomical dissociation for visual search and bisection behavior similar to that reported in neurological patients, and provides coordinates for future brain stimulation studies.  相似文献   
26.
Both the corollary discharge of the oculomotor command and eye muscle proprioception provide eye position information to the brain. Two contradictory models have been suggested about how these two sources contribute to visual localization: (1) only the efference copy is used whereas proprioception is a slow recalibrator of the forward model, and (2) both signals are used together as a weighted average. We had the opportunity to test these hypotheses in a patient (R.W.) with a circumscribed lesion of the right postcentral gyrus that overlapped the human eye proprioceptive representation. R.W. was as accurate and precise as the control group (n = 19) in locating a lit LED that she viewed through the eye contralateral to the lesion. However, when the task was preceded by a brief (<1 s), gentle push to the closed eye, which perturbed eye position and stimulated eye proprioceptors in the absence of a motor command, R.W.'s accuracy significantly decreased compared with both her own baseline and the healthy control group. The data suggest that in normal conditions, eye proprioception is not used for visual localization. Eye proprioception is, however, continuously monitored to be incorporated into the eye position estimate when a mismatch with the efference copy of the motor command is detected. Our result thus supports the first model and, furthermore, identifies the limits for its operation.  相似文献   
27.
High‐dimensional modelling of post‐stroke deficits from structural brain imaging is highly relevant to basic cognitive neuroscience and bears the potential to be translationally used to guide individual rehabilitation measures. One strategy to optimise model performance is well‐informed feature selection and representation. However, different feature representation strategies were so far used, and it is not known what strategy is best for modelling purposes. The present study compared the three common main strategies: voxel‐wise representation, lesion‐anatomical componential feature reduction and region‐wise atlas‐based feature representation. We used multivariate, machine‐learning‐based lesion‐deficit models to predict post‐stroke deficits based on structural lesion data. Support vector regression was tuned by nested cross‐validation techniques and tested on held‐out validation data to estimate model performance. While we consistently found the numerically best models for lower‐dimensional, featurised data and almost always for principal components extracted from lesion maps, our results indicate only minor, non‐significant differences between different feature representation styles. Hence, our findings demonstrate the general suitability of all three commonly applied feature representations in lesion‐deficit modelling. Likewise, model performance between qualitatively different popular brain atlases was not significantly different. Our findings also highlight potential minor benefits in individual fine‐tuning of feature representations and the challenge posed by the high, multifaceted complexity of lesion data, where lesion‐anatomical and functional criteria might suggest opposing solutions to feature reduction.  相似文献   
28.
Multi-target attention, that is, the ability to attend and respond to multiple visual targets presented simultaneously on the horizontal meridian across both visual fields, is essential for everyday real-world behaviour. Given the close link between the neuropsychological deficit of extinction and attentional limits in healthy subjects, investigating the anatomy that underlies extinction is uniquely capable of providing important insights concerning the anatomy critical for normal multi-target attention. Previous studies into the brain areas critical for multi-target attention and its failure in extinction patients have, however, produced heterogeneous results. In the current study, we used multivariate and Bayesian lesion analysis approaches to investigate the anatomical substrate of visual extinction in a large sample of 108 acute right hemisphere stroke patients. The use of acute stroke patient data and multivariate/Bayesian lesion analysis approaches allowed us to address limitations associated with previous studies and so obtain a more complete picture of the functional network associated with visual extinction. Our results demonstrate that the right temporo-parietal junction (TPJ) is critically associated with visual extinction. The Bayesian lesion analysis additionally implicated the right intraparietal sulcus (IPS), in line with the results of studies in neurologically healthy participants that highlighted the IPS as the area critical for multi-target attention. Our findings resolve the seemingly conflicting previous findings, and emphasise the urgent need for further research to clarify the precise cognitive role of the right TPJ in multi-target attention and its failure in extinction patients.  相似文献   
29.
Different reference frames have been identified to influence neglect behavior. In particular, neglect has been demonstrated to be related to the contralesional side of the subject's body (egocentric reference frames) as well as to the contralesional side of individual objects irrespective of their position to the patient (object-based reference frame). There has been discussion whether this distinction separates neglect into body- and object-based forms. The present experiment aimed to prove possible interactions between object-based and egocentric aspects in spatial neglect. Neglect patients' eye and head movements were recorded while they explored objects at five egocentric positions along the horizontal dimension of space. The patients showed both egocentric as well as object-based behavior. Most interestingly, data analysis revealed that object-based neglect varied with egocentric position. Although the neglect of the objects' left side was strong at contralesional egocentric positions, it ameliorated at more ipsilesional egocentric positions of the objects. The patients showed steep, ramp-shaped patterns of exploration for objects located on the far contralesional side and a broadening of these patterns as the locations of the objects shifted more to the ipsilesional side. The data fitted well with the saliency curves predicted by a model of space representation, which suggests that visual input is represented in two modes simultaneously: in veridical egocentric coordinates and in within-object coordinates.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号