首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5662篇
  免费   379篇
  国内免费   54篇
耳鼻咽喉   29篇
儿科学   185篇
妇产科学   118篇
基础医学   823篇
口腔科学   247篇
临床医学   446篇
内科学   1552篇
皮肤病学   132篇
神经病学   569篇
特种医学   134篇
外科学   465篇
综合类   11篇
一般理论   1篇
预防医学   289篇
眼科学   29篇
药学   366篇
中国医学   5篇
肿瘤学   694篇
  2024年   8篇
  2023年   51篇
  2022年   110篇
  2021年   182篇
  2020年   114篇
  2019年   136篇
  2018年   164篇
  2017年   110篇
  2016年   143篇
  2015年   169篇
  2014年   247篇
  2013年   301篇
  2012年   470篇
  2011年   438篇
  2010年   256篇
  2009年   228篇
  2008年   410篇
  2007年   397篇
  2006年   386篇
  2005年   373篇
  2004年   312篇
  2003年   301篇
  2002年   310篇
  2001年   34篇
  2000年   20篇
  1999年   25篇
  1998年   54篇
  1997年   49篇
  1996年   33篇
  1995年   38篇
  1994年   28篇
  1993年   13篇
  1992年   20篇
  1991年   17篇
  1990年   17篇
  1989年   11篇
  1988年   10篇
  1987年   4篇
  1986年   16篇
  1985年   10篇
  1984年   8篇
  1983年   9篇
  1982年   11篇
  1981年   13篇
  1980年   5篇
  1978年   4篇
  1976年   3篇
  1974年   5篇
  1972年   4篇
  1971年   4篇
排序方式: 共有6095条查询结果,搜索用时 31 毫秒
141.
In a study conducted on 114 patients undergoing unrelated donor haematopoietic stem cell transplantation (HSCT) for thalassaemia, we observed that the lack of activating killer immunoglobulin-like receptors (KIRs) on donor natural killer (NK) cells significantly increased the risk of graft-versus-host disease (GvHD) [hazard risk (HR) 4.2, 95% confidence interval (CI) 1.7-10.1, P = 0.002] and transplantation-related mortality (HR 4.7, 95% CI 1.6-14.2, P = 0.01). The risk of GvHD furthermore increased when recipients heterozygous for HLA-C KIR ligand groups (C1/C2) were transplanted from donors completely lacking activating KIRs (HR 6.1, 95% CI 1.9-19.2, P = 0.002). We also found that the risk of rejection was highest when the recipient was homozygous for the C2 HLA-KIR ligand group and the donor carried two or more activating KIRs (HR 6.8, 95% CI 1.9-24.4, P = 0.005). By interpolating the number of donor activating KIRs with recipient HLA-C KIR ligands, we created an algorithm capable of stratifying patients according to the immunogenetic risk of complications following unrelated HSCT. In clinical practice, this predictive tool could serve as an important supplement to clinical judgement and decision-making.  相似文献   
142.
143.

Background

Moderate normobaric hyperoxia causes alveolar and vascular lung derangement in the newborn rat. Endogenous nitric oxide (NO), which promotes lung growth, is produced from the metabolism of l-arginine to l-citrulline in endothelial cells. We investigated whether administering l-citrulline by raising the serum levels of l-arginine and enhancing NO endogenous synthesis attenuates moderate hyperoxia-induced lung injury.

Methods

Newborn rats were exposed to FiO2?=?0.6 or room air for 14?days to induce lung derangement and then were administered l-citrulline or a vehicle (sham). Lung histopathology was studied with morphometric features. Lung tissues and bronchoalveolar lavage fluid (BALF) were collected for analysis. Lung vascular endothelial growth factor (VEGF), nitric oxide synthase (eNOS), and matrix metalloproteinase 2 (MMP2) gene and protein expressions were assessed.

Results

Serum l-arginine rose in the L-citr?+?hyperoxia group (p?=?0.05), as well as the Von Willebrand factor stained vessels count (p?=?0.0008). Lung VEGF immune staining, localized on endothelial cells, was weaker in the sections under hyperoxia than the l-citr?+?hyperoxia and room air groups. This pattern was comparable with the VEGF gene and protein expression profiles. Mean alveolar size increased in the untreated hyperoxia and sham-treated groups compared with the groups reared in room air or treated with l-citrulline under exposure to hyperoxia (p?=?0.0001). Lung VEGF and eNOS increased in the l-citrulline-treated rats, though this treatment did not change MMP2 gene expression but regulated the MMP2 active protein, which rose in BALF (p?=?0.003).

Conclusions

We conclude that administering l-citrulline proved effective in improving alveolar and vascular growth in a model of oxygen-induced pulmonary damage, suggesting better lung growth and matrix regulation than in untreated groups.  相似文献   
144.
Regulatory T-cells (Tregs) are increased in chronic lymphocytic leukemia(CLL) and correlates with clinical and biological features of active/progressive disease. However, little is known about their ability to predict the time to first treatment (TFT). We evaluated 75 patients with Rai stage 0 CLL, in whom the absolute number of Tregs was determined at diagnosis, and correlated to main clinical and biological features, as well as to the need of receiving any specific therapy during the course of the disease. After a median follow-up of 30 months, 12 patients(16%) required therapy at some time from the diagnosis. Treated patients showed a significant higher number of peripheral white blood cells and B-lymphocytes, platelet count, cases with unmutated immunoglobulin heavy chain status, and high-risk cytogenetic abnormalities,as well as lower hemoglobin values, than patients who did not need therapy. A greater number of circulating Tregs was detected in treated patients (P < 0.001). Multivariate analysis confirmed that the absolute number of Tregs was an independent predictor of TFT in these patients, the best predictive cut-off being 41/mL. These data show that the absolute Tregs cell number is able to identify Rai stage 0 CLL patients at higher risk of requiring therapy.  相似文献   
145.
Based on our previous finding of the p.A382T founder mutation in ALS patients with concomitant parkinsonism in the Sardinian population, we hypothesized that the same variant may underlie Parkinson's disease (PD) and/or other forms of degenerative parkinsonism on this Mediterranean island. We screened a cohort of 611 patients with PD (544 cases) and other forms of degenerative parkinsonism (67 cases) and 604 unrelated controls for the c.1144G > A (p.A382T) missense mutation of the TARDBP gene. The p.A382T mutation was identified in nine patients with parkinsonism. Of these, five (0.9 % of PD patients) presented a typical PD (two with familiar forms), while four patients (6.0 % of all other forms of parkinsonism) presented a peculiar clinical presentation quite different from classical atypical parkinsonism with an overlap of extrapyramidal–pyramidal–cognitive clinical signs. The mutation was found in eight Sardinian controls (1.3 %) consistent with a founder mutation in the island population. Our findings suggest that the clinical presentation of the p.A382T TARDBP gene mutation may include forms of parkinsonism in which the extrapyramidal signs are the crucial core of the disease at onset. These forms can present PSP or CBD-like clinical signs, with bulbar and/or extrabulbar pyramidal signs and cognitive impairment. No evidence of association has been found between TARDBP gene mutation and typical PD.  相似文献   
146.
147.
Objective: Direct laser metal forming (DLMF) is a procedure in which a high‐power laser beam is directed onto a metal powder bed and programmed to fuse particles according to a computer‐aided design file, generating a thin metal layer. This histologic study evaluated the bone‐to‐implant contact (BIC%) around immediately loaded DLMF transitional implants retrieved after 2 months from posterior human maxillae. Methods: Twelve totally edentulous individuals (mean age, 66.14 ± 2.11 years) received DLMF transitional implants divided in twelve immediately loaded (IL) and twelve unloaded (UI) implants. These transitional implants were placed between conventional implants to support the interim complete maxillary denture during the healing period. After 8 weeks, the transitional implants and the surrounding tissue were removed and prepared for histomorphometric analysis. Results: Mature woven preexisting bone lined by newly formed bone in early stages of maturation were found around all retrieved implants. Histometric evaluation indicated that the mean BIC% was 45.20 ± 7.68% and 34.10 ± 7.85% for IL and UI, respectively (P <0.05). Conclusion: The present data obtained in humans showed that, although both IL and UI presented good BIC%, IL DLMF implants had a higher BIC% in the posterior maxilla.  相似文献   
148.
The aim of this study was to evaluate the quantity and quality of bony regeneration after we had used recombinant human bone morphogenetic protein-7 (rhBMP-7 to augment the floor of the maxillary sinus. Nine consecutive patients with bilateral posterior maxillary atrophy who required augmentation of the sinus for interposition of implants were treated simultaneously with rhBMP-7 (Osigraft) with deproteinised bone substitute (0.5 g on the test side) and with deproteinised bone alone (2.0 g on the control side). Computed tomographic images preoperatively, immediately postoperatively, and at 4 months postoperatively showed a mean (SD) postoperative gain of 10.8 (3.0) mm on the test side and of 10.2 (1.8) mm on the control side. Histological and histomorphometric analyses of biopsy specimens showed that there was significantly more new bone on the control side (19.9 (6.8)%) than on the test side (6.6 (4.8)%). In this pilot controlled trial of the use of rhBMP-7, histological analyses showed that it resulted in the formation of less bone than treatment with inorganic bovine hydroxyapatite.  相似文献   
149.
Purpose: In vivo bone response was assessed by removal torque, hystological and histometrical analysis on a recently developed biomedical Ti‐15Mo alloy, after surface modification by laser beam irradiation, installed in the tibia of rabbits. Materials and Methods: A total of 32 wide cylindrical Ti‐15Mo dental implants were obtained (10 mm × 3.75 mm). The implants were divided into two groups: 1) control samples (Machined surface – MS) and 2) implants with their surface modified by Laser beam‐irradiation (Test samples – LS). Six implants of each surface were used for removal torque test and 10 of each surface for histological and histometrical analysis. The implants were placed in the tibial metaphyses of rabbits. Results: Average removal torque was 51.5 Ncm to MS and >90 Ncm to LS. Bone‐to‐implant‐contact percentage was significantly higher for LS implants both in the cortical and marrow regions. Conclusions: The present study demonstrated that laser treated Ti‐15Mo alloys are promising materials for biomedical application.  相似文献   
150.
Intramyocellular triacylglycerol (IMTG) accumulation is highly associated with insulin resistance and metabolic complications of obesity (lipotoxicity), whereas comparable IMTG accumulation in endurance-trained athletes is associated with insulin sensitivity (the athlete’s paradox). Despite these findings, it remains unclear whether changes in IMTG accumulation and metabolism per se influence muscle-specific and systemic metabolic homeostasis and insulin responsiveness. By mediating the rate-limiting step in triacylglycerol hydrolysis, adipose triglyceride lipase (ATGL) has been proposed to influence the storage/production of deleterious as well as essential lipid metabolites. However, the physiological relevance of ATGL-mediated triacylglycerol hydrolysis in skeletal muscle remains unknown. To determine the contribution of IMTG hydrolysis to tissue-specific and systemic metabolic phenotypes in the context of obesity, we generated mice with targeted deletion or transgenic overexpression of ATGL exclusively in skeletal muscle. Despite dramatic changes in IMTG content on both chow and high-fat diets, modulation of ATGL-mediated IMTG hydrolysis did not significantly influence systemic energy, lipid, or glucose homeostasis, nor did it influence insulin responsiveness or mitochondrial function. These data argue against a role for altered IMTG accumulation and lipolysis in muscle insulin resistance and metabolic complications of obesity.Obesity is a global public health problem and a major risk factor for insulin resistance and type 2 diabetes. These disorders are characterized by excess lipid accumulation in multiple tissues, primarily as triacylglycerols (TAGs). The lipotoxicity hypothesis suggests that this lipid excess promotes cellular dysfunction and cell death, which ultimately contribute to insulin resistance and metabolic disease (1). However, intracellular TAG accumulation is not always associated with adverse metabolic outcomes, suggesting that TAGs themselves are not pathogenic (2). In contrast, other non-TAG lipid metabolites such as fatty acids (FAs), diacylglycerols (DAGs), and ceramides have been shown to influence glucose homeostasis and insulin action by interfering with insulin signaling and glucose transport, promoting endoplasmic reticulum stress and mitochondrial dysfunction, and activating inflammatory and apoptotic pathways (reviewed in ref. 3). Nevertheless, the precise identities and sources of these bioactive lipid intermediates remain elusive (4,5). Furthermore, whether intracellular TAGs serve as a protective sink or a toxic source of deleterious lipid metabolites that contribute to insulin resistance remains unclear (6).Since skeletal muscle is the major contributor to insulin-mediated glucose disposal, lipid excess in this tissue could have serious implications for systemic glucose homeostasis and insulin responsiveness (7). Indeed, numerous studies have demonstrated a strong association between intramyocellular triacylglycerol (IMTG) accumulation and insulin resistance (reviewed in ref. 8). In contrast, endurance exercise training is characterized by IMTG accumulation and insulin sensitivity (the athlete’s paradox) (2). This variable association between IMTG accumulation and insulin responsiveness has largely been attributed to differences in the balance between lipid delivery and muscle oxidative capacity (810). Not surprisingly then, most studies have focused on the impact of muscle FA uptake and/or oxidation on glucose homeostasis and insulin action (11). However, experimental manipulations of these parameters cannot distinguish among the effects of IMTGs, IMTG metabolism, and other lipid intermediates. Furthermore, accumulating evidence suggests that muscle oxidative capacity cannot entirely explain differences in IMTGs or insulin responsiveness (12). These findings have led to speculation that dynamic IMTG metabolism (i.e., TAG synthesis or hydrolysis) may be critically involved in lipid-induced insulin resistance (6). However, few studies have specifically addressed the contribution of IMTG metabolism per se to this process.The regulated storage and release of IMTGs remain poorly understood, but require the coordinated action of synthetic enzymes (i.e., diacylglycerol acyltransferases [DGATs]), hydrolytic enzymes (i.e., adipose triglyceride lipase [ATGL] and hormone sensitive lipase [HSL]), and other lipid droplet proteins (6). Specifically, modulating IMTG synthesis in murine skeletal muscle alters IMTG content and systemic glucose homeostasis, supporting a role for IMTG metabolism in metabolic disease (1315). However, the metabolic impact of modulating IMTG hydrolysis in vivo remains unclear. Global deletion of either ATGL (1619) or HSL (20) has produced variable results. The former, but not the latter, results in massive IMTG accumulation with improvement in systemic glucose homeostasis, suggesting that inhibition of ATGL-mediated TAG hydrolysis protects against insulin resistance. In contrast, recent studies in cardiac muscle (21) and other tissues (22,23) indicate that ATGL-mediated TAG hydrolysis is required for mitochondrial function such that enhancing, rather than inhibiting, ATGL action may improve metabolic outcomes. Nevertheless, the autonomous role of skeletal muscle TAG catabolism in influencing muscle-specific and systemic metabolic phenotypes remains unknown.The goal of the current study was to understand the contribution of IMTG hydrolysis to tissue-specific and systemic metabolic phenotypes, particularly glucose homeostasis and insulin action, in the context of obesity. We therefore generated animal models with decreased (skeletal muscle-specific ATGL knockout [SMAKO] mice) and increased (muscle creatine kinase [Ckm]-ATGL transgenic [Tg] mice) ATGL action exclusively in skeletal muscle, and assessed the metabolic consequences at baseline and in response to chronic high-fat feeding. Interestingly, modulation of IMTG hydrolysis via ATGL action did not significantly influence glucose homeostasis, insulin action, or other metabolic phenotypes in the context of obesity despite dramatic changes in IMTG content.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号