首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1844682篇
  免费   134289篇
  国内免费   3147篇
耳鼻咽喉   25972篇
儿科学   61443篇
妇产科学   52267篇
基础医学   273565篇
口腔科学   52191篇
临床医学   160676篇
内科学   358058篇
皮肤病学   39836篇
神经病学   139713篇
特种医学   70826篇
外国民族医学   429篇
外科学   282003篇
综合类   39149篇
现状与发展   3篇
一般理论   442篇
预防医学   135421篇
眼科学   42696篇
药学   140582篇
  4篇
中国医学   4501篇
肿瘤学   102341篇
  2018年   18227篇
  2016年   15612篇
  2015年   17813篇
  2014年   24535篇
  2013年   37189篇
  2012年   50368篇
  2011年   53532篇
  2010年   31647篇
  2009年   29774篇
  2008年   51142篇
  2007年   55112篇
  2006年   56197篇
  2005年   54095篇
  2004年   52496篇
  2003年   50646篇
  2002年   49587篇
  2001年   86573篇
  2000年   88577篇
  1999年   74482篇
  1998年   20674篇
  1997年   18185篇
  1996年   18586篇
  1995年   17562篇
  1994年   16632篇
  1993年   15279篇
  1992年   59304篇
  1991年   58385篇
  1990年   57406篇
  1989年   56202篇
  1988年   52127篇
  1987年   50708篇
  1986年   48406篇
  1985年   45939篇
  1984年   34165篇
  1983年   29447篇
  1982年   17092篇
  1981年   15150篇
  1979年   31967篇
  1978年   22454篇
  1977年   19360篇
  1976年   18310篇
  1975年   20157篇
  1974年   23707篇
  1973年   22774篇
  1972年   21596篇
  1971年   20145篇
  1970年   19004篇
  1969年   18050篇
  1968年   16856篇
  1967年   14871篇
排序方式: 共有10000条查询结果,搜索用时 16 毫秒
61.
62.
63.
64.
65.
BACKGROUND AND PURPOSE:Accurate and reliable detection of white matter hyperintensities and their volume quantification can provide valuable clinical information to assess neurologic disease progression. In this work, a stacked generalization ensemble of orthogonal 3D convolutional neural networks, StackGen-Net, is explored for improving automated detection of white matter hyperintensities in 3D T2-FLAIR images.MATERIALS AND METHODS:Individual convolutional neural networks in StackGen-Net were trained on 2.5D patches from orthogonal reformatting of 3D-FLAIR (n = 21) to yield white matter hyperintensity posteriors. A meta convolutional neural network was trained to learn the functional mapping from orthogonal white matter hyperintensity posteriors to the final white matter hyperintensity prediction. The impact of training data and architecture choices on white matter hyperintensity segmentation performance was systematically evaluated on a test cohort (n = 9). The segmentation performance of StackGen-Net was compared with state-of-the-art convolutional neural network techniques on an independent test cohort from the Alzheimer’s Disease Neuroimaging Initiative-3 (n = 20).RESULTS:StackGen-Net outperformed individual convolutional neural networks in the ensemble and their combination using averaging or majority voting. In a comparison with state-of-the-art white matter hyperintensity segmentation techniques, StackGen-Net achieved a significantly higher Dice score (0.76 [SD, 0.08], F1-lesion (0.74 [SD, 0.13]), and area under precision-recall curve (0.84 [SD, 0.09]), and the lowest absolute volume difference (13.3% [SD, 9.1%]). StackGen-Net performance in Dice scores (median = 0.74) did not significantly differ (P = .22) from interobserver (median = 0.73) variability between 2 experienced neuroradiologists. We found no significant difference (P = .15) in white matter hyperintensity lesion volumes from StackGen-Net predictions and ground truth annotations.CONCLUSIONS:A stacked generalization of convolutional neural networks, utilizing multiplanar lesion information using 2.5D spatial context, greatly improved the segmentation performance of StackGen-Net compared with traditional ensemble techniques and some state-of-the-art deep learning models for 3D-FLAIR.

White matter hyperintensities (WMHs) correspond to pathologic features of axonal degeneration, demyelination, and gliosis observed within cerebral white matter.1 Clinically, the extent of WMHs in the brain has been associated with cognitive impairment, Alzheimer’s disease and vascular dementia, and increased risk of stroke.2,3 The detection and quantification of WMH volumes to monitor lesion burden evolution and its correlation with clinical outcomes have been of interest in clinical research.4,5 Although the extent of WMHs can be visually scored,6 the categoric nature of such scoring systems makes quantitative evaluation of disease progression difficult. Manually segmenting WMHs is tedious, prone to inter- and intraobserver variability, and is, in most cases, impractical. Thus, there is an increased interest in developing fast, accurate, and reliable computer-aided automated techniques for WMH segmentation.Convolutional neural network (CNN)-based approaches have been successful in several semantic segmentation tasks in medical imaging.7 Recent works have proposed using deep learning–based methods for segmenting WMHs using 2D-FLAIR images.8-11 More recently, a WMH segmentation challenge12 was also organized (http://wmh.isi.uu.nl/) to facilitate comparison of automated segmentation of WMHs of presumed vascular origin in 2D multislice T2-FLAIR images. Architectures that used an ensemble of separately trained CNNs showed promising results in this challenge, with 3 of the top 5 winners using ensemble-based techniques.12Conventional 2D-FLAIR images are typically acquired with thick slices (3–4 mm) and possible slice gaps. Partial volume effects from a thick slice are likely to affect the detection of smaller lesions, both in-plane and out-of-plane. 3D-FLAIR images, with isotropic resolution, have been shown to achieve higher resolution and contrast-to-noise ratio13 and have shown promising results in MS lesion detection using 3D CNNs.14 Additionally, the isotropic resolution enables viewing and evaluation of the images in multiple planes. This multiplanar reformatting of 3D-FLAIR without the use of interpolating kernels is only possible due to the isotropic nature of the acquisition. Network architectures that use information from the 3 orthogonal views have been explored in recent works for CNN-based segmentation of 3D MR imaging data.15 The use of data from multiple planes allows more spatial context during training without the computational burden associated with full 3D training.16 The use of 3 orthogonal views simultaneously mirrors how humans approach this segmentation task.Ensembles of CNNs have been shown to average away the variances in the solution and the choice of model- and configuration-specific behaviors of CNNs.17 Traditionally, the solutions from these separately trained CNNs are combined by averaging or using a majority consensus. In this work, we propose the use of a stacked generalization framework (StackGen-Net) for combining multiplanar lesion information from 3D CNN ensembles to improve the detection of WMH lesions in 3D-FLAIR. A stacked generalization18 framework learns to combine solutions from individual CNNs in the ensemble. We systematically evaluated the performance of this framework and compared it with traditional ensemble techniques, such as averaging or majority voting, and state-of-the-art deep learning techniques.  相似文献   
66.
67.
68.
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号