首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2192篇
  免费   188篇
  国内免费   18篇
耳鼻咽喉   16篇
儿科学   101篇
妇产科学   108篇
基础医学   251篇
口腔科学   108篇
临床医学   289篇
内科学   371篇
皮肤病学   59篇
神经病学   157篇
特种医学   37篇
外国民族医学   1篇
外科学   159篇
综合类   56篇
现状与发展   1篇
一般理论   1篇
预防医学   195篇
眼科学   40篇
药学   251篇
中国医学   44篇
肿瘤学   153篇
  2024年   9篇
  2023年   48篇
  2022年   130篇
  2021年   159篇
  2020年   124篇
  2019年   135篇
  2018年   178篇
  2017年   134篇
  2016年   121篇
  2015年   106篇
  2014年   120篇
  2013年   164篇
  2012年   225篇
  2011年   191篇
  2010年   108篇
  2009年   67篇
  2008年   86篇
  2007年   103篇
  2006年   60篇
  2005年   44篇
  2004年   33篇
  2003年   19篇
  2002年   13篇
  2000年   4篇
  1999年   3篇
  1998年   3篇
  1997年   4篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1980年   1篇
排序方式: 共有2398条查询结果,搜索用时 15 毫秒
61.
Two important pathophysiological mechanisms involved during cerebral ischemia are oxidative stress and inflammation. In pathological conditions such as brain ischemia the ability of free radicals production is greater than that of elimination by endogenous antioxidative systems, so brain is highly injured due to oxidation and neuroinflammation. Fibrates as peroxisome proliferator-activated receptor (PPAR)-α ligands, are reported to have antioxidant and anti-inflammatory actions. In this study, gemfibrozil, a fibrate is investigated for its therapeutic potential against global cerebral ischemia–reperfusion (I/R) injury of male and female rats. This study particularly has focused on inflammatory and antioxidant signaling pathways, such as nuclear factor erythroid-related factor (Nrf)-2, as well as the activity of some endogenous antioxidant agents. It was found that pretreatment of animals with gemfibrozil prior to I/R resulted in a sexually dimorphic outcome. Within females it proved to be protective, modulating inflammatory factors and inducing antioxidant defense system including superoxide dismutase (SOD), catalase, as well as glutathione level. However, Nrf-2 signaling pathway was not affected. It also decreased malondialdehyde level as an index of lipid peroxidation. In contrast, gemfibrozil pretreatment was toxic to males, enhancing the expression of inflammatory factors such as tumor necrosis factor-α, nuclear factor-κB, and cyclooxygenase-2, and decreasing Nrf-2 expression and SOD activity, leading to hippocampal neurodegeneration. Considering that gemfibrozil is a commonly used anti-hyperlipidemic agent in clinic, undoubtedly more investigations are crucial to exactly unravel its sex-dependent neuroprotective/neurodegenerative potential.  相似文献   
62.
The inflammatory response is an immune response of the body when exposed to internal and external stimuli. Cyclooxygenases (COX) are major inflammatory mediators implicated in inflammation. COX-2 is reported to be involved in neuroinflammation. Moreover, 15-Deoxy-d 12,14-prostaglandin J2 (15d-PGJ2), an endogenous ligand of peroxisome proliferator-activated receptor gamma (PPAR-γ), has been demonstrated to have anti-inflammatory actions. In this study, we investigated whether co-therapy of a selective COX-2 inhibitor NS-398 and 15d-PGJ2 as a PPAR-γ ligand could exert additional neuroprotective effects in rat pheochromocytoma (PC12) cells. Our findings showed that 15d-PGJ2 and NS-398 suppress the apoptotic pathway in PC12 cells exposed to H2O2 by attenuation of the Bax/Bcl-2 ratio. This effect was mediated through PPAR-γ, as it was reversed by GW9662 (a PPAR-γ inhibitor). Also, 15d-PGJ2 and NS-398 induced the Nrf2 signaling pathway and decreased NF-κB level in a PPAR-γ-dependent manner. We found that coadministration of a selective COX-2 inhibitor and a PPAR-γ ligand in PC12 cells has equal neuroprotective effect compared to their effects when used separately. Considering the higher affinity of 15d-PGJ2 for PPAR-γ than NS-398, it seems that the observed neuroprotection of this combination therapy was from 15d-PGJ2.  相似文献   
63.
Impaired memory performance in offspring is one of the long-lasting neurobehavioral consequences of prenatal opiate exposure. Here, we studied the effects of prenatal morphine exposure on inhibitory avoidance memory performance in male and female offspring and also investigated whether these deficits are reversible during the postnatal development. Pregnant Wistar rats received morphine sulfate through drinking water, from the first day of gestation up to the day 13, M1–13, or to the time of delivery, M1–21. Four- and ten-week-old (adolescent and adult, respectively) male and female offspring were subjected to behavioral assays and then analysis of proteins involved in apoptosis or in synaptic plasticity. Results revealed that adolescent and adult female rats failed in passive avoidance retention task in both M1–13 and M1–21 groups. Adolescent and adult male offspring were similar to control animals in M1–13 group. However M1–21 impaired retention task in prepubertal male offspring, and this memory loss was repaired in postpubertal stage. Consistently, Bax/Bcl-2 ratio and cleaved caspase-3 were significantly increased in both M1–13 and M1–21 adolescent and adult female rats, but only in M1–21 adolescent male rats. Furthermore, prenatal morphine exposure reduced the expression of brain-derived neurotrophic factor precursor protein in adolescent and adult female offspring and also decreased p-ca(2+)/calmodulin-dependent kinase II/ca(2+)/calmodulin-dependent kinase II ratio in adolescent male and female rats. Altogether, the results show that prenatal morphine exposure, depending on the time or duration of exposure, has distinct effects on male and female rats, and postnatal development may reverse these deficits more likely in males.  相似文献   
64.
Yolk–shell nanoparticles (YSNPs) are a new class of hollow nanostructures, and their unique properties can be utilized in drug delivery systems. The recent progress in YSNPs-based carriers is highlighted in drug delivery systems. Doxorubicin hydrochloride, ceftriaxone sodium, and methotrexate are three of the most common drugs that are used in this field. According to the reported studies, the materials used most often as yolk–shells are magnetic nanoparticles and polymers. The used methods for synthesizing a diverse array of YSNPs are classified based on their core structures. Various properties of YSNPs include their high drug-loading capacity, and their ability to decrease drug toxicity and satisfactorily and efficiently release drugs.

The recent progress in yolk–shell nanoparticles (YSNPs) as a new class of hollow nanostructures applied for drug delivery.  相似文献   
65.
66.
Purpose

The real mechanisms of intensive exercise training-induced energy efficiency have not yet been well examined. Therefore, the aim of the present study was to investigate the effects of sprint interval training (SIT) on gene expression of uncoupling proteins (UCPs) and endothelial nitric oxide synthase (eNOS).

Methods

For this purpose, 16 Albino Wistar rats (250–300 g) were randomly divided into equal groups of control and sprint training. The animals run on treadmill for 10 weeks, 5 days per week at intensity corresponding to 90–95% maximal oxygen consumption. The gene expression of UCP2, UCP3 and eNOS was analyzed by RT-PCR method in hearts. The data were analyzed by independent samples T test at P?<?0.05 level.

Results

Sprint interval training significantly decreased mRNA expression of UCP2 (t14?=?4.818, P?=?0.001) and UCP3 (t14?=?4.620, P?=?0.001) in cardiac muscle of rats. In contrast, mRNA expression of eNOS in cardiac muscle significantly increased following sprint interval training (t14?=?7.967, P?=?0.001).

Conclusion

This study elucidates that SIT through reduction in gene expression of uncoupling proteins can improve energy efficiency. But, more studies are needed to confirm this hypothesis.

  相似文献   
67.
Journal of Neurology - The Present study was conducted to systematically review the effect of the melatonin on sleep quality. We summarized evidence from randomized clinical trials (RCTs) that...  相似文献   
68.
Wiener Medizinische Wochenschrift - Infection prevention protocols are the accepted standard to control nosocomial infections. These protective measures intensified after the coronavirus 2019...  相似文献   
69.
Low-level laser therapy (LLLT) is a form of photon therapy which can be a non-invasive therapeutic procedure in cancer therapy using low-intensity light in the range of 450–800 nm. One of the main functional features of laser therapy is the photobiostimulation effects of low-level lasers on various biological systems including altering DNA synthesis and modifying gene expression, and stopping cellular proliferation. This study investigated the effects of LLLT on mice mammary tumor and the expression of Let-7a, miR155, miR21, miR125, and miR376b in the plasma and tumor samples. Sixteen mice were equally divided into four groups including control, and blue, green, and red lasers at wavelengths of 405, 532, and 632 nm, respectively. Weber Medical Applied Laser irradiation was carried out with a low power of 1–3 mW and a series of 10 treatments at three times a week after tumor establishment. Tumor volume was weekly measured by a digital vernier caliper, and qRT-PCR assays were performed to accomplish the study. Depending on the number of groups and the p value of the Kolmogorov-Smirnov test of normality, a t test, a one-way ANOVA, or a non-parametric test was used for data analyses, and p?<?0.05 was considered to be statistically significant. The average tumor volume was significantly less in the treated blue group than the control group on at days 21, 28, and 35 after cancerous cell injection. Our data also showed an increase of Let-7a and miR125a expression and a decrease of miR155, miR21, and miR376b expression after LLLT with the blue laser both the plasma and tumor samples compared to other groups. It seems that the non-invasive nature of laser bio-stimulation can make LLLT an attractive alternative therapeutic tool.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号