首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   3篇
妇产科学   3篇
基础医学   8篇
口腔科学   11篇
临床医学   2篇
内科学   9篇
神经病学   2篇
特种医学   1篇
预防医学   3篇
眼科学   2篇
药学   18篇
中国医学   1篇
肿瘤学   1篇
  2021年   3篇
  2019年   1篇
  2017年   2篇
  2015年   1篇
  2013年   2篇
  2012年   4篇
  2011年   2篇
  2010年   2篇
  2009年   4篇
  2008年   1篇
  2007年   5篇
  2006年   5篇
  2005年   4篇
  2004年   5篇
  2003年   5篇
  2002年   5篇
  2000年   1篇
  1997年   3篇
  1996年   1篇
  1994年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有61条查询结果,搜索用时 15 毫秒
51.
In this study, we have determined the contractile effects of CB1 and CB2 cannabinoid receptor activation on rat isolated atria and the different signaling pathways involved. Anandamide did not has significantly effect on atria contractility, however, the treatment with both CB1 (AM251) or CB2 (AM630) receptor antagonists, the endocannabinoids triggered stimulation or inhibition on contractility respectively. The ACEA stimulation of CB1 receptor exerted decrease on contractility, that significantly correlated with the decrement of cAMP and the stimulation of nitric oxide synthase (NOS) and the accumulation of cyclic GMP (cGMP). On the contrary, JWH 015 stimulation of CB2 receptor triggered positive contractile response that significantly correlated with the increase cAMP production. The inhibiton of adenylate cyclase activity impaired the JWH 015 activation of CB1 receptor induced positive contractile effect, while inhibitors of phospholipase C (PLC), NOS and soluble nitric oxide (NO)-sensitive guanylate cyclase blocked the dose-response curves of ACEA on contractility. Those inhibitors also attenuated the CB1 receptor-dependent increase in activation of NOS and cGMP accumulation. These results suggest that CB2 receptor agonist mediated positive contractile effect associated with increased production on cAMP while CB1 receptor agonist mediated decrease on contractility associated with decreased cAMP accumulation and increase production of NO and cGMP; that occur secondarily to stimulation of PLC, NOS and soluble guanylate cyclase. Data give pharmacological evidence for the existence of functional CB1 and CB2 cannabinoid receptors in rat isolated atria and may contribute to a better understanding the effects of cannabinoids in the cardiovascular system.  相似文献   
52.
53.
54.
Experiments were designed to determine whether cannabinoids affect salivary gland function. For this purpose, the effect of anandamide on cAMP accumulation, amylase release and Na+-K+-ATPase activity was studied in rat parotid glands. Anandamide induced a concentration-dependent increase in cAMP and led to amylase release but inhibited Na+-K+-ATPase activity. These effects were blocked by the CB1 cannabinoid receptor antagonist, AM281. The inhibition of adenylyl cyclase activity by SQ 22536 impaired amylase release and Na+-K+-ATPase inhibition. The effect of anandamide on cAMP accumulation significantly correlated with its action either on amylase release or on Na+-K+-ATPase activity. Such correlation strongly supports the view that the effect of anandamide on amylase release and Na+-K+-ATPase activity is the result of cAMP accumulation. The relative potencies of the CB1 cannabinoid receptor antagonist, AM281, to block these three functional responses were similar, supporting the view that anandamide actions in parotid glands were achieved through a single receptor subtype, the CB1. Binding studies using the selective cannabinoid CB1 receptor antagonist, [3H]SR141716A, indicated the presence of the specific binding site. It may be concluded that in parotid glands the endogenous cannabinoid anandamide, bound to the CB1 cannabinoid receptor subtype, induces cAMP accumulation which in turn leads to amylase release and Na+-K+-ATPase inhibition.  相似文献   
55.
1 The mechanism and receptor subtypes involved in carbachol-stimulated amylase release and its changes after castration were studied in parotid slices from male rats. 2 Carbachol induced both amylase release and inositol phosphate (IP) accumulation in parotid slices from control and castrated rats, but castration induced a decrease of carbachol maximal effect. The effect of castration was reverted by testosterone replacement. 3 The selective M(1) and M(3) muscarinic receptor antagonists, pirenzepine and 4-diphenylacetoxy-N-methylpiperidine methiodide, respectively, inhibited carbachol-stimulated amylase release and IP accumulation in a dose-dependent manner in parotid slices from control and castrated rats. 4 A diminution of binding sites of muscarinic receptor in parotid membrane from castrated rats was observed. Competition binding assays showed that both, M(1) and M(3) muscarinic receptor subtypes are expressed in membranes of parotid glands from control and castrated rats, M(3) being the greater population. 5 These results suggest that amylase release induced by carbachol in parotid slices is mediated by phosphoinositide accumulation. This mechanism appears to be triggered by the activation of M(1) and M(3) muscarinic receptor subtypes. Castration induced a decrease of the maximal effect of carbachol evoked amylase release and IP accumulation followed by a diminution in the number of parotid gland muscarinic acetylcholine receptors.  相似文献   
56.
This study determined the different signal pathways involved in M1/M3 muscarinic acetylcholine receptor (mAChR) dependent stimulation of nitric oxide synthase (NOS) activity/cyclic GMP (cGMP) production and nNOS mRNA expression in rat retina. Exposure of the retina to different concentrations of carbachol caused an increase in NOS activity, cGMP production and phosphoinositol (PI) accumulation. The increase in NOS activity and cGMP content was blocked by L-NMMA and ODQ, respectively. Also, phospholipase C (PLC) and calcium/calmodulin (CaM) inhibition prevented the carbachol activation on NOS/cGMP pathways. Both, 4-DAMP and pirenzepine but not AF-DX 116 blocked the increase in NOS and cGMP induced by carbachol. Carbachol-stimulation of M1/M3 mAChR increased nNOS-mRNA levels associated with an increase of endogenous NO and cGMP production. The mechanism appears to occur secondarily to stimulation of PIs turnover via PLC. This triggers a cascade reaction involving CaM and soluble guanylate cyclase leading to NO and cGMP accumulation, that in turn, up regulates nNOS-mRNA gene expression. These results give novel insight into the mechanism involved in the regulation of nNOS-mRNA levels by mAChR activation of retina.  相似文献   
57.
In this paper, we investigate the role of muscarinic acetylcholine receptor (mAChR) activity in the regulation of inducible (i) nitric oxide synthase (iNOS) expression and activity. The signaling pathway involved is also examined. These experiments also provide a link between mAChR activation and the nitric oxide (NO)-dependent regulation of retinal vascular diameter. The diameter of the retinal vessels at a distance of 1 disc diameter from the center of the optic disc was measured in rats using digital retinal photography, and both iNOS-mRNA gene expression and NOS were specifically measured using RT-PCR and [U-(14)C] citrulline assays, respectively. Stimulation of M(1) and M(3) mAChR with carbachol caused an increase in vessel diameter, in iNOS-mRNA levels and in NOS activity in the retina. Aminoguanidine, an inhibitor of iNOS, attenuated all these effects. Inhibitors of phospholipase C (PLC) and protein kinase C (PKC) but not calcium/calmodulin (CaM) prevented the muscarinic-dependent increase in iNOS-mRNA levels. The results obtained suggest that the activation of mAChR increases retinal vessel diameters by increasing the production of nitric oxide (NO) through iNOS activation and iNOS-mRNA gene expression. The mechanism appears to occur secondarily to stimulation of PLC and PKC enzymatic activity.  相似文献   
58.
59.
59Fe was incorporated in vivo into intestinal sacs prepared in iron deficient rats and 59Fe counts were detected in blood, spleen, liver, femur and intestine. The i.v. injection of isoproterenol (i.v. 2 μg/rat) or N′,O′-dibutyryladenosine 3′,5′-cyclic monophosphate (10 μM/100 g b.w.) enhanced significantly the iron counts in blood, spleen, liver and femur but not in intestine. (−)-Propranolol (2 mg · kg−1 b.w.i.v.) antagonized the stimulatory effect of isoproterenol. It is suggested that isoproterenol increases iron absorption via the stimulation of β-adrenoreceptors of the intestinal mucosa.  相似文献   
60.
It is not known whether the mechanisms involved in amylase release in submandibular and parotid glands are similar. Here, the participation of different signalling pathways in amylase release by the parotid and submandibular glands of the male rat was compared by studying the secretory response after beta-adrenergic stimulation. The beta-adrenergic agonist isoproterenol induced an increase of cAMP in both salivary glands, but while in the parotid it triggered amylase release, in the submandibular it was unable to increase amylase secretion. Parotid amylase release was dependent on adenylate cyclase activation, as SQ-22536 inhibited the secretory effect. In contrast, submandibular amylase secretion did not depend on the intracellular concentration of cAMP, as SQ-22536 did not modify its secretory response. Moreover, other activators of adenylate cyclase, such as forskolin and prostaglandin E2, also failed to modify amylase release by the submandibular gland. Neither ionophores nor calcium-blocking agents, as well as calcium-calmodulin and nitric oxide synthase inhibitors, were effective in modifying basal amylase release by the submandibular gland. However, the disruption of microfilaments with cytochalasin B, but not the disruption of microtubules with colchicine, prevented amylase release in that gland. It is concluded that amylase exocytosis in the submandibular gland is a constitutive non-regulated phenomenon, as it is independent of extracellular or intracellular signals. It depends only on the integrity of the microfilaments, probably used by the vesicles to travel from the Golgi apparatus to the plasma membrane.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号