首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   717篇
  免费   58篇
  国内免费   8篇
耳鼻咽喉   11篇
儿科学   28篇
妇产科学   5篇
基础医学   101篇
口腔科学   14篇
临床医学   72篇
内科学   202篇
皮肤病学   29篇
神经病学   40篇
特种医学   42篇
外科学   78篇
综合类   5篇
预防医学   23篇
眼科学   8篇
药学   53篇
肿瘤学   72篇
  2024年   6篇
  2023年   18篇
  2022年   46篇
  2021年   87篇
  2020年   32篇
  2019年   48篇
  2018年   43篇
  2017年   30篇
  2016年   34篇
  2015年   33篇
  2014年   34篇
  2013年   42篇
  2012年   54篇
  2011年   53篇
  2010年   26篇
  2009年   10篇
  2008年   32篇
  2007年   36篇
  2006年   21篇
  2005年   20篇
  2004年   20篇
  2003年   13篇
  2002年   15篇
  2001年   10篇
  2000年   4篇
  1999年   7篇
  1998年   5篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1990年   1篇
排序方式: 共有783条查询结果,搜索用时 15 毫秒
21.
Maintenance of the cluster of differentiation 4 (CD4) positive lymphocyte count (CD4 count) is important for human immunodeficiency virus (HIV) positive individuals. Although a higher body mass index (BMI) is shown to be associated with a higher CD4 count, BMI itself does not reflect body composition. Therefore, we examined the association of body weight, body composition and the CD4 count, and determined the optimal ranges of CD4 count associated factors in Japanese HIV positive individuals. This cross-sectional study included 338 male patients treated with antiretroviral therapy for ≥12 months. Multiple logistic regression analysis was used to identify factors significantly associated with a CD4 count of ≥500 cells (mm3)−1. The cutoff values of factors for a CD4 ≥ 500 cells (mm3)−1 and cardiovascular disease risk were obtained by receiver operating characteristic curves. Age, body fat percentage (BF%), nadir CD4 count, duration of antiretroviral therapy (ART), years since the HIV-positive diagnosis and cholesterol intake showed significant associations with the CD4 count. The cutoff value of BF% for a CD4 ≥ 500 cells (mm3)−1 and lower cardiovascular disease risk were ≥25.1% and ≤25.5%, respectively. The BF%, but not the BMI, was associated with CD4 count. For the management of HIV positive individuals, 25% appears to be the optimal BF% when considering the balance between CD4 count management and cardiovascular disease risk.  相似文献   
22.
23.
Recently, cytoreductive prostatectomy for metastatic prostate cancer (mPCa) has been associated with improved oncological outcomes. This study was aimed at evaluating whether robot-assisted radical prostatectomy (RARP) as a form of cytoreductive prostatectomy can improve oncological outcomes in patients with mPCa. We conducted a retrospective study of twelve patients with mPCa who had undergone neoadjuvant therapy followed by RARP. The endpoints were biochemical recurrence-free survival, treatment-free survival, and de novo metastasis-free survival. At the end of the follow-up period, none of the enrolled patients had died from PCa. The 1- and 2-year biochemical recurrence-free survival rates were 83.3% and 66.7%, respectively, and treatment-free survival rates were 75.0% and 56.3%, respectively. One patient developed de novo bone metastases 6.4 months postoperatively, and castration-resistant prostate cancer 8.9 months postoperatively. After RARP, the median duration of recovery of urinary continence was 5.2 months. One patient had severe incontinence (>2 pads/day) 24 months postoperatively. RARP may be a treatment option in patients with mPCa who have achieved a serum prostate-specific antigen level < 0.2 ng/mL, and present without new lesions on imaging.  相似文献   
24.
Understanding molecular processes at nanoparticle surfaces is essential for designing active photocatalytic materials. Here, we utilize nuclear magnetic resonance (NMR) spectroscopy to track photocatalytic hydrogen evolution using donor molecules and water isotopologues. Pt–TiO2 catalysts were prepared and used for isotopic hydrogen evolution reactions using alcohols as electron donors. 1H NMR monitoring revealed that evolution of the H2 and HD species is accompanied by the oxidation of donor molecules. The isotopic selectivity in the hydrogen evolution reaction gives rise to formal overpotential. Based on a comparison of the rates of hydrogen evolution and donor oxidation, we propose the use of ethanol as an efficient electron donor for the hydrogen evolution reaction without re-oxidation of radical intermediates.

Isotopic molecule processes at photocatalytic hydrogen evolution reactions observed by NMR clarify the importance of the choice of electron donors for efficient chemical energy conversions at electrified interfaces.

The conversion of light energy to chemical energy requires a combination of electronic excitation and sequential electron transfer.1–3 Efficient electronic excitation is achieved by choosing materials with suitable optical properties, while efficient electron transfer can be achieved by rational design of catalytically active surface sites.4 To achieve high catalytic performance, an understanding of the molecular processes occurring at the catalyst surface is required.Photocatalytic hydrogen evolution is accompanied by oxidation of the electron donor. Most studies on this reaction have been conducted using in-line mass spectrometry measurements5 or oxygen-quenching methods.6 However, monitoring the whole reaction cycle using one methodology remains challenging.Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for observing chemical reactions. This method is mainly used to confirm small-molecule conversions in organic synthesis. However, NMR spectroscopy can also be used to gain information of nanoparticle surfaces7 or even for the detection of photocatalytic reactions.8–10 Furthermore, NMR spectroscopy can be used to determine the nuclear spin states of product molecules.11 Nevertheless, there are very few reported studies on the in situ observation of photocatalytic hydrogen evolution using NMR spectroscopy.Accordingly, in the present study, we utilized NMR spectroscopy to observe the photocatalytic hydrogen evolution reaction. We employed Pt–TiO2, which is frequently used for the photocatalytic hydrogen evolution reaction, as a model catalyst for this study. NMR spectroscopy enabled sub-micromole-scale detection of reaction products within one minute. We investigated the dependence of isotopic hydrogen evolution reactions on the donor molecules. The effects of efficient donors on the photocatalytic hydrogen evolution reaction are discussed.Pt–TiO2 nanoparticles were prepared by a typical chemical reduction method (see ESI). The morphologies of TiO2 and Pt–TiO2 nanoparticles were characterized by transmission electron microscopy, as shown in Fig. S1 and S2. The average size of the Pt nanoparticles is approximately 5 nm. The average size of the TiO2 nanoparticles is within the range 20–30 nm. Typically, 5 mg of catalysts and 0.6 mL of reaction mixture were introduced to an NMR tube under Ar for observation of the photocatalytic hydrogen evolution reaction by NMR spectroscopy. Fig. 1a shows the 1H NMR spectra of Pt–TiO2/2-propanol/D2O before and after light irradiation. Before light irradiation, three peaks are observed (Fig. 1a, black). The single peak observed at 4.81 ppm is assigned to HDO.121H signals from the methine and methyl groups of 2-propanol are observed at 4.01 and 1.20 ppm, respectively.Open in a separate windowFig. 1 1H NMR spectra of Pt–TiO2/2-propanol/D2O. The black lines are the 1H NMR spectra before light irradiation. The red lines are the 1H NMR spectra after light irradiation for 15 min. (a) Full spectrum. (b) Enlargement of the oxidation product. (c) Enlargement of the area for the H2 and HD species.After light irradiation, additional species are observed (Fig. 1a, red). We confirmed the photocatalytic response of the Pt–TiO2 nanoparticles from ON–OFF experiments (Fig. S3). The oxidation product is acetone resulting from two-electron and two-proton oxidation of 2-propanol. The signal at 2.25 ppm is assigned to the methyl group in the acetone (Fig. 1b).12 Hydrogen evolution is observed as a reduction reaction. Four peaks are observed between 4.5 and 4.7 ppm (Fig. 1c). The single peak at 4.63 ppm can be assigned to H2 dissolved in the solvent.13 Other peaks at 4.66, 4.59, and 4.52 ppm are assigned to the HD.14–16 The observed coupling constant for HD is 43 Hz, which is a typical value for HD.14–16 The difference in the chemical shifts of H2 and HD is due to variation of the nuclear magnetic screening constants with interatomic separation as a consequence of the zero-point energy in vibration.17,18Importantly, NMR spectroscopy can detect H2 and HD species from the photocatalytic hydrogen evolution reaction. The observed peak splitting of the three peaks is due to the heteronuclear coupling between hydrogen and deuterium atoms.14–16 The observed chemical shift for H2 in methanol/D2O is 4.56 ppm. The observed chemical shifts of HD in methanol/D2O are 4.60, 4.53, and 4.46 ppm (Fig. S4). These values are similar to those for 2-propanol/D2O. The observed chemical shift of H2 in ethanol/D2O is 4.61 ppm. Those for HD in ethanol/D2O are 4.65, 4.57, and 4.50 ppm (Fig. S5). The slight shift in the H2 and HD signals is due to the difference in the shielding effect depending on the solvation environment.19–21 The coupling constant between hydrogen and deuterium in HD is 43 Hz, and it is 43 Hz in methanol/D2O and ethanol/D2O. The similarity in the coupling constants for the different solvents indicates that the chemical bonding between hydrogen and deuterium is consistent.14–16 Interestingly, the fullwidth at half maximum (FWHM) values for the H2 and HD signals are dependent on the solvent. The FWHM values for the H2 signal are 1.48, 2.24, and 3.51 Hz in methanol/D2O, ethanol/D2O, and 2-propanol/D2O, respectively. The FWHM values for the HD signal are 1.59, 2.00, and 3.32 Hz for methanol/D2O, ethanol/D2O, and 2-propanol/D2O, respectively. H2 and HD show similar FWHM values in the same solvent. However, the FWHM value is solvent-dependent. In general, a wider peak indicates lower mobility.16 Therefore, it is expected that 2-propanol induces lower mobility for the hydrogen, probably because of the rotation or diffusional freedom of hydrogen molecules. The solvation environment of hydrogen influences the molecular mobility of hydrogen species in the photocatalytic hydrogen evolution reaction.Oxidation products of the donor molecules are observed in the NMR spectra, as shown in Fig. S4 and S5. The number of product molecules is quantified on the basis of the hydrogen atoms in the alkyl chain groups in 2-propanol, ethanol, and methanol as reactants. For methanol, the signals for methylene glycol, 1-methoxymethanol, and methyl formate are observed as shown in Fig. S4. For ethanol, acetaldehyde and acetic acid are observed as the products, as shown in Fig. S5. As described above, the oxidation product of 2-propanol is limited to acetone. This is due to the unstable intermediate formed in the oxidation of 2-propanol.22 Conversely, the reaction products of methanol23–26 and ethanol27 are complicated owing to the sequential oxidation and/or hydration reactions.We evaluated the isotopic selectivity of the hydrogen evolution reaction depending on the donor molecules. Fig. 2 shows the typical isotopic selectivity of the hydrogen evolution reaction. The amounts of H2 and HD were quantified from the NMR spectra. The HD/H2 ratios were calculated to be 4.1, 3.4, and 1.9 for 2-propanol, ethanol, and methanol, respectively, where the mixture ratio of D2O and alcohol is 1 : 1. In both cases, attenuation of the hydrogen evolution reaction is specifically observed for methanol. This is probably due to poisoning of the Pt surface with carbon monoxide molecules evolved from the oxidation of methanol at the TiO2 surface.28Open in a separate windowFig. 2Isotopic selectivity for HD (black) and H2 (red) from the photocatalytic hydrogen evolution reaction using a 1 : 1 mixture of D2O and the corresponding alcohol upon light irradiation for 15 min.H2 is classified as o-H2 or p-H2 depending on the nuclear spin isomer.29,30o-H2 is observable and p-H2 is not by NMR because of the Zeeman splitting of the nucleus spin momentum. Because of the spin statistic, the ratio of o-H2 and p-H2 is 3 : 1.29,30 D2 is not included in the observation because of the low sensitivity to D atoms, even in 2H NMR spectroscopy measurements. Similarly, we observed an increase in the oxidation products of methanol and ethanol. Importantly, the selectivity for the oxidation and hydrogen evolution reaction were continuously monitored, as shown in Fig. S6–S11. In addition, the maximum concentration of H2 in this photocatalytic reaction is approximately 1 mmol L−1, which is below the solubility limits of water and alcohol.31–34 These results suggest that a robust photocatalytic process continues throughout the catalytic cycle.Isotopic hydrogen evolution provides information about the reaction mechanism at the metal surface.35–39 The reaction follows an electrochemical adsorption and desorption cycle. The adsorption of atomic hydrogen from the proton donor (Volmer step)40 is followed by either desorption via recombination of adsorbed hydrogens (Tafel step)41 or desorption of atomic hydrogen with a proton donor (Heyrovsky step).42 The enrichment of hydrogen over deuterium is observed for the Heyrovsky, Tafel, and Volmer step sequence.40–42 Generally, the Tafel step is rate-limiting in the hydrogen evolution process for Pt surfaces. Therefore, isotopic selectivity is not dependent on electrochemical potential.As shown in Fig. 2, the isotopic selectivity is similar for the reactions using 2-propanol and ethanol. This suggests that the formal potential of the hydrogen evolution reaction is similar for these two conditions. Additionally, we evaluated self-diffusion of water molecules and each alcohol molecule as shown in Table S1. We determined diffusion coefficients for the alcohols and HDO. These results suggest that the diffusion of the reactant in the hydrogen evolution reaction is not the rate-determining step in the photocatalytic reaction cycle.43Interestingly, the efficiency of the multi-electron transfer is dependent on the donor molecule. Fig. S12 shows the time-course of the oxidation and reduction reactions obtained by accounting for the half-reaction. Linearity in the time-course plot is observed, indicating stable photocatalysis. Therefore, the reaction rate was calculated from the slope of each reaction. Fig. 3 and S12 show the rates of oxidation and reduction obtained by accounting for the number of electrons in the half-reaction, defined as rox and rred. For a 3 : 1 ratio of D2O and alcohol, rred is nominally low. This is probably due to the small number of donor molecules in the catalytic reaction. Importantly, rred shows the highest value of 0.26 μmol min−1 for the combination of 2-propanol/D2O (1 : 1). This value is comparable with that for ethanol/D2O (1 : 1), which is 0.22 μmol min−1. Conversely, the rox values for 2-propanol and ethanol are not comparable. Indeed, rox for 2-propanol is seven times higher than that for ethanol.Open in a separate windowFig. 3Rates of the oxidation reaction (black) and hydrogen evolution reaction (red) using a 1 : 1 mixture of D2O and the corresponding alcohol.Finally, we discuss the effect of donor molecules on the efficiency of the photocatalytic hydrogen evolution reaction. The stability of the radical derived from the alcohol plays an important role in the reaction efficiency. 2-Propanol is oxidized to the tertiary carbocation radical intermediate, which is consumed by spontaneous oxidation at the TiO2 surface (Fig. 4a).44–47 For ethanol (Fig. 4b), the oxidized carbocation radical species is expected to be unstable compared with that for 2-propanol. Therefore, the rate of the hydrogen evolution reaction is comparable with the rate of the oxidation reaction. For methanol (Fig. 4c), the carbon monoxide evolved is expected to attenuate the hydrogen evolution reaction.28 Thus, the efficiency of the redox reaction can be evaluated from the NMR spectroscopy results.Open in a separate windowFig. 4Schematic representations of photocatalytic hydrogen evolution reactions over Pt–TiO2 using (a) 2-propanol, (b) ethanol, and (c) methanol.In conclusion, we used NMR spectroscopy to track the photocatalytic hydrogen evolution reaction using Pt–TiO2 as a model catalyst. We performed rapid detection of dissolved hydrogen molecules in the solvent and the oxidized product at the sub-micromole scale by 1H NMR. The method is useful for observation of the dynamic state of molecules in solution and product-based determination of the reaction mechanism. This method is also applicable to the screening of photocatalysts under given conditions. In addition, we found that an efficient multi-electron-transfer photocatalytic reaction is possible using ethanol as the donor molecule. This study demonstrates the utility of NMR for the clarification of the hydrogen evolution reaction mechanism as a means to evaluate potential catalysts, from organic molecular catalysts to inorganic nanocrystals.  相似文献   
25.
26.
27.
Fuel cells are expected to serve as next-generation energy conversion devices owing to their high energy density, high power, and long life performance. The oxygen reduction reaction (ORR) is important for determining the performance of fuel cells; therefore, using catalysts to promote the ORR is essential for realizing the practical applications of fuel cells. Herein, we propose Nb-incorporated TiO2 as a suitable alternative to conventional Pt-based catalysts, because Nb doping has been reported to improve the conductivity and electron transfer number of TiO2. In addition, Nb-incorporated TiO2 can induce the electrocatalytic activity for the ORR. In this paper, we report the synthesis method for Nb-incorporated TiO2 through a hydrothermal process with and without additional load pressures. The electrocatalytic activity of the synthesized samples for the ORR was also demonstrated. In this process, the samples obtained under various load pressures exceeding the saturated vapor pressure featured a high content of Nb and crystalline TiNb2O7, resulting in an ellipsoidal morphology. X-ray diffraction results also revealed that, on increasing the Nb doping amounts, the diffraction peak of the anatase TiO2 shifted to a lower angle and the full width at half maximum decreased. This implies that the Ti atom is exchanged with the Nb atom during this process, resulting in a decrease in TiO2 crystallinity. At a doping level of 10%, Nb-incorporated TiO2 exhibited the best electrocatalytic activity in terms of the oxygen reduction current (iORR) and onset potential for the ORR (EORR); this suggests that 10% Nb-doped samples have the potential for enhancing electrocatalytic activity.  相似文献   
28.
29.
30.
Eomesodermin-expressing (Eomes+) T-helper (Th) cells show cytotoxic characteristics in secondary progressive multiple sclerosis. We found that Eomes+ Th cell frequency was increased in the peripheral blood of amyotrophic lateral sclerosis and Alzheimer's disease patients. Furthermore, granzyme B production by Th cells from such patients was high compared with controls. A high frequency of Eomes+ Th cells was observed in the initial (acutely progressive) stage of amyotrophic lateral sclerosis, and a positive correlation between Eomes+ Th cell frequency and cognitive decline was observed in Alzheimer's disease patients. Therefore, Eomes+ Th cells may be involved in the pathology of amyotrophic lateral sclerosis and Alzheimer's disease. ANN NEUROL 2024;95:1093–1098  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号